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B i n a r y  T r a n s l a t i o n  
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Maurice P. Marks, and Scott G. Robinson 

hen Digital started to design 
the Alpha AXP architecture 
in the fall of 1988, the Alpha 
A X P  team was concerned 
with  running  ex is t ing  
VAX TM code and MIPS TM 

code on the new Alpha AXP 
computers [5, 6]. To get 
full performance on a new 
computer architecture, an 
application must be ported 
by rebuilding, using native 
compilers. For a single pro- 

gram written in a standard programming language, 
this is a matter of recompile and run. A complex soft- 
ware application can be built, however, from hundreds 
of source pieces using dozens of tools. A native port of 
such an application is only possible when all parts of 
the build path are running on the new architecture. 

Therefore, having a way to run an existing (old 
architecture) binary version of a complex application 
on a new architecture is an important interim measure. 
It allows a user to get applications up and running 
immediately, with minimal porting effort. Once a 
user's everyday environment is established, appli- 
cations can be rebuilt over time, using native code or 

partially native and partially old code. 
Several techniques are used in the 

industry to run the b inary  code of an 
old architecture on a new architecture. 
Figure 1 shows four common techni- 
ques, from slowest to fastest: 

• Software interpreter  (e.g., Insignia 
Solutions'  SoftPC) 
• Microcoded emulator(e.g. ,  PDP-11 
compatibi l i ty  mode in early VAX 
computers)  
• Binary  t r ans la to r  (e.g., H u n t e r  
System's X D O S )  
• Native compiler  

A software interpreter  is a p rogram 
that reads instructions of the old archi- 
tecture one at a time, performing each 
opera t ion  in tu rn  on a software- 
maintained version of the old architec- 
ture's state. Interpreters  are not very 
fast, but  run on a wide variety of 
machines and can faithfully reproduce 
the behavior of self-modifying pro- 
grams, programs that branch to data, 
programs that branch to a checksum of 
themselves, and so forth. Caching 
interpreters gain speed by retaining 
predecoded forms of previously inter- 
preted instructions. 

A microcoded emulator  operates 
similarly to a software interpreter  but  
usually with some key hardware assists 
to decode the old instructions quickly 
and to hold hardware state information 
in registers of the micromachine.  An 
emulator  is typically faster than an 
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interpreter but can run only on a 
specific microcoded new machine. 
This technique cannot be used to run 
existing code on a reduced instruction 
set computer (RISC) machine, since 
RISC architectures do not have a 
microcoded hardware layer underlying 
the visible machine architecture. 

A translated binary program is a 
sequence of  new-architecture in- 
structions that reproduces the behav- 
ior o f  an old-architecture program. 
Typically, much of  the state informa- 
tion of  the old machine is kept in reg- 
isters in the new machine. Translated 
code reproduces faithfully the calling 
standard, implicit state, instruction 
side effects, branching flow, and 
other artifacts o f  the old machine. 
Translated programs can be much 
faster than interpreters or emulators, 
but slower than native-compiled pro- 
grams. 

Translators can be classified as ei- 

ther (1) bounded translation systems, 
in which all the instructions o f  the 
old program must exist at translation 
time and must be found and trans- 
lated to new instructions [2, 3, 7], or 
(2) open-ended translation systems, 
in which code also may be discov- 
ered, created, or  modified at execu- 
tion time. Bounded systems usually 
require manual intervention to find 
100% of  the code; open-ended sys- 
tems can be fully automatic. 

To run existing VAX and MIPS 
programs, an open-ended system is 
absolutely necessary. For example, 
some customer programs write li- 
cense-check code (VAX instructions) 
to memory and branch to that code. 
A bounded system fails on such pro- 
grams. 

A native-compiled program is a 
sequence of  new-architecture in- 
structions produced by recompil- 
ing the program. Usually, native- 
compiled programs use newer, faster 
calling conventions than old pro- 
grams. With a well-tuned optimizing 
compiler, native-compiled programs 
can be substantially faster than any of  
the other choices. 

Most large programs are not self- 
contained; they call library routines, 
windowing services, databases, and 
toolkits, for example. Also, these 
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programs (directly or indirectly) in- 
voke operating-system services. In 
simple environments with a single 
dominant  library, it can be sufficient 
to rewrite that library in native code 
and to interpret user programs, par- 
ticularly user programs that actually 
spend most of  their time in the li- 
brary. This strategy is commonly 
used to run Windows ~ and Macin- 
tosh ~° programs under  the Unix ~ 
operating system. 

In more robust enviromnents, it is 
not practical to rewrite all the shared 
libraries by hand; collections o f  doz- 
ens or  even hundreds  o f  images 
(such as typical VAX ALL-IN-1 ~ 
systems) must be run in the old envi- 
ronment,  with an occasional excur- 
sion into the native operating system. 
Over time, it is desirable (1) to re- 
build some images using a native 
compiler while retaining other im- 
ages as translated code and (2) to 
achieve interoperability between 
these old and new images. The  inter- 
face between an old environment 
and a new one typically consists of  
'~jacket" routines that receive a call 
using old conventions and data struc- 
tures, reformat the parameters, per- 
form a native call using new conven- 
tions and data structures, reformat 
the result, and return. 

The  Alpha AXP Migration Tools 
team considered running old VAX 
binary programs on Alpha AXP 
computers using a simple software 
interpreter, but rejected this method 
because the performance would be 
too slow to be useful. The  idea of  
using some form of  microcoded 
emulator was rejected also. This 
technique would compromise the 
performance of  a native Alpha AXP 
implementation, and VAX compati- 
bility would be nearly impossible to 
achieve without microcode, which is 
inconsistent with a high-speed RISC 
design. 

Therefore,  we turned to open- 
ended binary translation. We were 
aware of  the earlier Hewlett-Packard 
binary translator, but its single-image 
HP ~ 3000 input code looked much 
simpler to translate than large collec- 
tions o f  hand-coded VAX assembly 
language programs [1]. One team 
member  wrote a VAX-to-VAX bi- 
nary translator as a p roof  o f  concept, 
which looked feasible, so we set the 

1 0  February 1993/Vol.36, No.2 /C~UMnUr.,~nI,"J"nUONI OP 'UMllU ACre 



www.manaraa.com

following goals: 

1. Open-ended (completely auto- 
matic) translation of almost all user- 
mode applications from the 
OpenVMS VAX system to the 
OpenVMS AXP system. 
2. Open-ended translation of almost 
all user-mode applications from the 
ULTRIX system to the DEC OSF/1 
system. 
3. Run-time performance of trans- 
lated code on Alpha AXP computers 
that meets or exceeds the perfor- 
mance of the original code on the 
original architecture. 

4. Optional reproduction of subtle 
old-architecture details, at the cost of 
run-time performance, e.g., complex 
instruction set computer (CISC) in- 
struction atomicity for multithreaded 
applications and exact arithmetic 
traps for sophisticated error hand- 
lers. 
5. I f  translation is not possible, gen- 
eration of explicit messages that give 
reasons and specify what source 
changes are necessary. 

While creating the VAX translator, 
we discovered the process of building 
flow graphs and tracking data de- 
pendencies yielded information 
about source code bugs, perfor- 
mance bottlenecks, and dependen- 
cies on features not available in all 
Alpha AXP operating systems. This 
analysis information could be valu- 
able to a source code maintainer. 
Thus, we added one more product 
goal: 

6. Optional source analysis informa- 
tion. 

To achieve these goals, the team 
created two binary translators: 
VEST, which translates OpenVMS 
VAX binary images to OpenVMS 
AXP images, and mx, which trans- 
lates ULTRIX MIPS images to DEC 
OSF/1 AXP images. However, binary 
translation is only half the migration 
process. As shown in Figure 2, the 
other half is to build a run-time envi- 
ronment in which to execute the 
translated code. This second half 
must bridge any differences between 
old and new operating systems, for 
example, calling standards, and ex- 
ception handling. For open-ended 
translation, this part of the process 

must also include a way to run old 
code not discovered (or nonexistent) 
at translation time. The translated- 
image environment (TIE) and mxr 
run-time environment support the 
VEST and mx translators, respec- 
tively, by reproducing the old oper- 
ating environments. Each environ- 
ment supports open-ended 
translation by including a fallback 
interpreter of old code and extensive 
run-time feedback to avoid using the 
interpreter except for dynamically 
created code. Our design philosophy 
is to do everything feasible to stay out 
of the interpreter, rather than to in- 
crease the speed of the interpreter. 
This approach gives better perfor- 
mance over a wider range of pro- 
grams than using pure interpreters 
or bounded translation systems. 

The remainder of this article dis- 
cusses the two binary translator/run- 
time environment pairs available for 
Alpha AXP computers: VEST/TIE 
and mx/mxr. To establish a basis for 
the discussion, the reader must un- 
derstand the following terms: datum, 
alignment, instruction atomicity, 
granularity, interlocked update, and 
word tearing. (See box.) 

VEST: Translating a VAX Image 
Translating a VAX image involves 
two main steps: analyzing VAX code 
and generating Alpha AXP code. 
The translated images produced are 
OpenVMS AXP images and may be 

run just like native images [4]. Trans- 
lated images run with the assistance 
of the translated image environment, 
discussed later. The VEST binary 
translator is written in C + +  and 
runs on VAX, MIPS, and Alpha AXP 
machines. The TIE is written in the 
OpenVMS system programming lan- 
guages, Bliss, and Alpha AXP assem- 
bler. 

To locate VAX code, VEST starts 
disassembling code at known entry 
points and traces the program's flow 
of control recursively. Entry points 
come from main and global routines, 
debug symbol table entries, and op- 
tional information files (including 
run-time feedback from the TIE). 

As VEST traces the program, it 
builds a flow graph that consists of 
basic blocks (i.e., straight-line code 
sequences) annotated with informa- 
tion derived from parsing instruc- 
tions. Then, VEST performs several 
analyses on the flow graph to propa- 
gate context information to each 
basic block and eliminate unneces- 
sary operations. Context information 
includes condition code usage, regis- 
ter contents, stack depth, and other 
information that allows VEST to 
generate optimized code. 

Analysis is important for achieving 
good performance. For example, no 
condition codes exist in the Alpha 
AXP architecture. Without analysis it 
would be necessary to compute con- 
dition codes for each VAX instruc- 
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tion even if the codes were not used. 
Furthermore, several forms of  analy- 
sis were invented to allow correct 
translation. For example, VEST de- 
termines automatically if a subrou- 
tine does a normal return. 

Code analysis can detect many 
problems, including some that indi- 
cate latent bugs in the source image. 
For example, VEST can detect 
uninitialized variables, improperly 
formed VAX CASE instructions, 
stack depth mismatches along two 
different paths to the same code (the 
program expects data to be at a cer- 
tain stack depth), improperly formed 
returns from subroutines, and modi- 
fications to a VAX call frame. A la- 
tent bug in the source image should 
be fixed, since the translated image 
may demonstrate incorrect behavior 
due to that bug. 

Also, analysis detects the use of  
unsupported OpenVMS features 
including unsupported system ser- 
vices. The source image must be 
modified to eliminate the use o f  
these features. 

Some problems reported by VEST 
result f rom code that is hackish in 
nature. For example, we found code 
that expects a call mask at an entry 
point to be executed as a no-op in- 
struction so that the code preceding 
the subroutine can simply execute 
the call mask, rather than go through 
the overhead of  a VAX j u m p  (JMP) 
instruction. VEST reproduces the 
behavior of  the VAX program, even 
if this behavior is a result of  luck. 

A VEST-generated flow graph is 
displayed in Figure 3. Dashed lines 
represent code paths followed if a 
conditional branch is taken. Solid 
lines indicate fall-through paths. A 
problem is highlighted by a wide, 
dashed pointer whose bottom end 
indicates the basic block in which the 
problem was uncovered. Full blocks 
show the path that reveals the error; 
empty blocks show basic blocks that 

are not in the error path. In Figure 3, 
a path exists by which register 3 (R3) 
may be used without being set if the 
VAX BNEQ (branch if the register 
does not equal zero) instruction in 
the second basic block is true the first 
time through the code sequence. 

Code Generation 
The VEST translator generates code 
by converting each VAX instruction 
into zero or more Alpha AXP in- 
structions. The architecture map- 
ping is straightforward because there 
are more Alpha AXP registers than 
VAX registers. The  VAX architec- 
ture has only 15 registers, which are 
used for both floating-point and in- 
teger operations. The Alpha AXP 
architecture has separate integer and 
floating-point registers. VAX regis- 
ters R0 through R14 are mapped to 
Alpha AXP R0 through RI4  for all 
operations except floating point. 
Registers R12, R13, and RI4  retain 
their VAX designations as argument  
pointer, frame pointer, and stack 
pointer, and R15 is used to resolve 
PC-relative references. Floating- 
point operations are mapped to F0 
through F14. 

The  VAX architecture has condi- 
tion codes that may be referenced 
explicitly. In translated images, con- 
dition codes are mapped into R22 
and R23. Similar to the HP 3000 
translator, R23 is used as a fast con- 
dition code register for positive/ 
negative/zero results [1]. R22 con- 
tains all four condition code bits, 
which are calculated only when nec- 
essary. All remaining Alpha AXP 
registers are used as scratch registers 
or  for OpenVMS AXP standard calls. 

VEST connects simple branches 
directly to their translated targets. 
VEST performs backward symbolic 
execution of  VAX instructions to re- 
solve as many computed branch tar- 
gets as feasible. I f  more than one 
possible computed target exists, a 
run-time lookup is done on the VAX 
target address. I f  the lookup fails to 
find a translated target, a fallback 
VAX interpreter is used, as described 
later. Unlike bounded translation 
systems, which must achieve 100% 
resolution o f  computed targets, the 
VEST and mx binary translators re- 
quire no manual intervention. 

Translated Images, Files Used 
A translated image has the same for- 
mat as an OpenVMS AXP image and 
contains the original OpenVMS VAX 
image as well as the Alpha AXP in- 
structions that were generated for 
the VAX code. The  run-time VAX 
interpreter in the TIE  needs the 
original VAX instructions as a fall- 
back. (Also, some error  handlers look 
up the call stack for pointers to spe- 
cific VAX instructions.) The  ad- 
dresses of  statically allocated data in 
the translated image are identical to 
their VAX addresses. The image 
contains a VAX-to-Alpha AXP ad- 
dress-mapping table for use during 
lookups and may contain an instruc- 
tion atomicity table, described later. 

Translated images use the 
OpenVMS VAX calling standard. 
Native images use different conven- 
tions, but translated images inter- 
operate with native or  translated 
shareable images. Automatic jacket- 
ing services are provided in the TIE  
to convert calls using one set o f  con- 
ventions into the other. In many 
cases, jacketing services permit sub- 
stitution of  a native shareable image 
for a translated shareable image 
without modification. However, a 
jacket routine is sometimes required. 
For example, on OpenVMS AXP sys- 
tems, the translated Fortran run- 
time library, FORRTL_TV, invokes 
the native Alpha AXP library 
DEC$FORRTL for I/O-related sub- 
routine calls. DEC$FORRTL has a 
different interface than FORRTL 
has on an OpenVMS VAX system. 
For these calls, FORRTL_TV con- 
tains hand-written jacket routines. 

Translating an image requires 
only one f i le--a  VAX-executable 
image. Several optional files make 
translation more effective: 

1. Image information files (IIFs). 
VEST creates IIFs automatically to 
provide information about shareable 
image interfaces. The  information 
includes the addresses of  entry 
points, names of  routines, and re- 
source utilization. 
2. Symbol information files (SIFs). 
VEST generates SIFs automatically 
to control the global symbol table in a 
translated shared library, facilitating 
interoperation between translated 
and native images. 
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Figure 3. 
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3. Hand-edited information files 
(HIFs). The TIE  generates HIFs au- 
tomatically, which may be hand- 
edited to supply information that 
VEST cannot deduce. HIFs contain 
directives to tell VEST about unde- 
tected entry points, to force it to 
change specific assumptions about an 
image during translation, and to pro- 
vide known interface properties to be 
propagated into an IIF. 

VEST Performance Considerations 
In evaluating translated-code perfor- 
mance, we recognized that there was 
a significant trade-off between the 
performance and accuracy of  emu- 
lating the VAX architecture. VEST 
permits users to select several archi- 
tectural assumptions and optimiza- 
tions, including: 

• D-float precision. The Alpha 
AXP architecture provides hardware 
support for D-float with only 53-bit 
mantissas, whereas the VAX archi- 
tecture provides 56-bit mantissas. 
The user may select translation with 
either 53-bit hardware support 
(faster) or 56-bit software support 
(slower). 
• Alignment. Alpha AXP instruc- 
tions support  only naturally aligned 
longword (32-bit) and quadword (64- 
bit) memory operations. Unaligned 
memory operations cause alignment 
faults, which are handled transpar- 
ently by software at significant run- 
time expense. The  user may direct 
VEST to assume that data references 
are unaligned whenever alignment 
information is unavailable. 
• Instruction atomicity and memory 
granularity. Multitasking and multi- 
processing programs may depend on 
instruction atomicity and memory 
operation characteristics similar to 
those of  the VAX architecture. VEST 
uses special code sequences to pro- 
duce exact VAX memory character- 
istics. VEST and the T IE  cooperate 
to ~nsure VAX instruction atomicity 
when instructed to do so. 

Untranslatable Images 
Some characteristics make Open- 
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8070 CE 
DH RYSTONE\Proc2\504 [C] 
R3 used 
%VEST-I-NONSTDCALLU, PICKY: Non-standard call uses R3. 

mask=O01C 

3072 
DH RYSTON E\PROC2\504 :!~;":~':" 
\504 OneToFifty *lntParlO; '~'~;~. 
\509 IntLoc = *lntParlO + 10; ':~1 
SUBL2 S A #04,SP 
MOVAB 00002COC,R2 ":'i~i~, 
MOVAB 00002C14,R4 
ADDL3 S ^ #OA,@O4(AP),R1 

O0010BDC: LDA R16,FFFC(R14) 
O0010BEO: BIC R16,#F,R16 
O0010BE4: CMPULT R16,R36,R17 
O0010BE8: CMOVNE R17,R16,R30 

* O0010BEC: LDL R18,4(R12) 
* O0010BFO: SUBL R14,#4,R14 
* O0010BF4: LDA R2,ACOC(R15) 
* 00010BF8: LDL R18,0(R15) 

O0010BFC: LDA R4,AC14(R15) 
00010C00: ADDL R18,#A,R1 

3088 
DHRYSTONE\Proc2k512 
\512 if (CharlGIob ==21') 
CMPB (R2),#41 
BNEQ 00003097 
* 00010C04: LDQU R20,O(R2) 

00010C08: MOV 41.R21 
O0010COC: EXTBL R30,R2,R19 
00010C10: CMPEQ R19,R21,R24 

* 00010014: BEQ R24.10C30 

3097 
DHRYSTONE\Proc2\518 
k518 if (EnumLoc = = Identl) 
TSTL R3 
BNEQ 00003O88 
* 00010C30: BNE R3,10C04 

I {.  . . . . .  { 

/ 

R 
g 

J 

I 
. . . . . .  

8070_CE 1 DHRYSTONE\Proc2~504 [C] 
R3 used 
%VEST-I-NONSTDCALLU, PICKY: Non-standard call uses R3. 
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modifications, because the image 
formats are different.  

VMS VAX images untranslatable,  
including: 

• Exception handler  issues. Images 
that depend  on examining the VAX 
processor status longword (PSL) dur-  
ing exception handl ing must  be 
modified,  because the VAX PSL is 
not  available within exception hand-  
lers. 
• Direct reference to undocumented  
system services. Some software con- 
tains references to unsuppor ted  and 
undocumented  system services, such 
as an internal-to-VMS service, which 
parses image symbol tables. VEST 
highlights these references.  
• Exact VAX memory  management  
requirements.  Images that depend  
on exact VAX memory  management  
behavior  do not  function proper ly  
and must  be modified.  These  images 
include those that depend  on VAX 
page size or  that expect  certain ob- 
jects to be m a p p e d  to part icular  ad- 
dresses. 
• Image  format.  Programs that use 
images as data are not able to read 
OpenVMS AXP images without 

TIE Design O v e r v i e w  
The  run-t ime translated-image envi- 
ronment ,  TIE,  assists in executing 
translated OpenVMS VAX images 
under  the OpenVMS AXP opera t ing  
system. Figure 4 and Table 1 show 
the contents of  TIE. 

Complications may occur when 
translated OpenVMS VAX images 
are run under  the OpenVMS AXP 
opera t ing  system: failure to find all 
code dur ing  translation, VAX in- 
struction guarantees,  instruction ato- 
micity, memory  update ,  and preserv- 
ing VAX exceptions. 

Failure to Find All Code During 
Translation 
When the VEST binary translator 
encounters  a branch or  subroutine 
call to an unknown destination, 
VEST generates code to call one of  
the T IE  lookup routines. The  lookup 
routines map  a VAX instruction ad- 
dress to a translated Alpha  AXP code 
address.  I f  an address  mapping  ex- 
ists, then a t ransfer  to the translated 
code is per formed.  Otherwise, the 
VAX in te rpre te r  executes the desti- 
nation code. When  the VAX inter- 
pre ter  encounters  a flow-of-control 
change, it checks for re turns  to trans- 
lated code. I f  the target  o f  the flow 
change is t ranslated code, the inter- 
p re te r  exits to this code. Otherwise, 

Figure 4. 
VEST 
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the in te rpre te r  continues to in terpre t  
the target. 

Lookup operat ions that t ransfer  
control  to the in te rpre te r  record the 
start ing VAX code address  in an H I F  
file entry. The  VAX image can be 
retranslated then with the HIF  infor- 
mation, result ing in an image that 
runs faster. 

Lookup routines are used also to 
call native Alpha  AXP (nontrans- 
lated) routines. The  TIE  supplies the 
required special autojacketing pro-  
cessing that allows in teropera t ion 
between translated and native rou- 
tines, with no manual  intervention. 
At  load time, each translated image 
identifies itself to the TIE  and sup- 
plies a mapping  table used by the 
lookup routines. The  TIE  maintains 
a cache o f  translations to speed up 
the actual lookup processing. 

Every translated image contains 
both the original VAX code and the 
cor responding  Alpha  AXP code. 
When a translated image identifies 
itself, the T I E  marks its original VAX 
addresses with the page protect ion 
called f a u l t  on execute (FOE). An 
Alpha  AXP processor that at tempts 
to execute an instruction on one o f  
these pages generates an access viola- 
tion fault, which is processed by a 
TIE  condit ion handler  to convert  the 
FOE fault into an appropr ia te  desti- 
nation address  lookup operat ion.  For  
example,  the FOE might occur when 
a translated rout ine re turns  to its 
caller. I f  the caller was in terpreted,  
then its re turn  address  is a VAX code 
address  instead o f  a translated VAX 
(Alpha AXP code) address.  The  
Alpha  AXP processor at tempts to 
execute the VAX code and generates 
a FOE condition. The  TIE  condit ion 
handler  converts this into a JMP 
lookup operat ion.  

VAX Instruction Guarantees 
Instruction guarantees are charac- 
teristics of  a compute r  architecture 
that are inherent  to instructions exe- 
cuted on that architecture.  For  ex- 
ample,  on a VAX computer ,  if in- 
struction 1 writes data  to memory  
and instruction 2 writes data  to mem- 
ory, a second processor must  not see 
the write from instruction 2 before 
the write from instruction 1. This 
p roper ty  is called strict read-write 
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ordering. 
The  VEST/TIE pair can provide 

the illusion that a single CISC in- 
struction is executed in its entirety, 
even though the underlying transla- 
tion is a series of  RISC instructions. 
VEST/TIE can also provide the illu- 

Tab le  1. TIE C o n t e n t s  

sion of  two processors updating adja- 
cent memory bytes without interfer- 
ence, even though the underlying 
RISC instructions manipulate four 
or eight bytes at a time. Finally, 
VEST/TIE can provide exact mem- 
ory read-write ordering and arith- 

metic exceptions, e.g., overflow. All 
these provisions are optional and 
require extra execution time. Tables 
2 and 3 show the visibility differences 
between various guarantees on VAX 
and Alpha AXP systems as well as for 
translated VAX programs. 

Tab le  2. Single P rocessor  G u a r a n t e e s  

Tab le  3. Mult iple P rocessor  G u a r a n t e e s  
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special Considerations for 
Instruction Atomicity 
The VAX architecture requires that 
interrupted instructions complete or 
appear never to have started. Since 
translation is a process of  converting 
one VAX instruction to potentially 
many Alpha AXP instructions, run- 
time processing must achieve this 
guarantee o f  instruction atomicity. 
Hence, a VAX instruction atomicity 
controller (IAC) was created to ma- 
nipulate Alpha AXP state to an 
equivalent VAX state. When a trans- 
lated asynchronous event-processing 
routine is called, the IAC is invoked. 
The IAC examines the Alpha AXP 
instruction stream and either (1) 
backs up the interrupted program 
counter to restart at the equivalent 
VAX instruction boundary or  (2) 
executes the remaining instructions 
to the next boundary. Many VAX 
programs do not require this guar- 
antee to operate correctly, so VEST 
emits code that is VAX instruction 
atomic only if the qualifier 

/PRESERVE= INSTRUCTION_ 
A T O M I C I T Y  

is specified when translating an 
image. 

VEST-generated code consists of  
four sections that are detected by the 
IAC. These sections have the follow- 
ing functions: 

• Get operands to temporary regis- 
ters 
• Operate on these temporary regis- 
ters 
• Atomically update VAX results 
that could generate side effects (i.e., 
an exception or interlocked access) 
• Perform any updates that cannot 
generate side effects (e.g., register 
updates) 

The  VAX interpreter achieves 
VAX instruction atomicity by using 
the atomic-move, register to memory 
(AMOVRM) instruction, which is 

implemented in privileged-architec- 
ture library (PAL) subroutines and 
which updates a contiguous region of  
memory containing VAX state with- 
out being interrupted. At the begin- 
ning of  each interpreted VAX in- 
struction, a read-and-set-flag (RS) 
instruction sets a flag that is cleared 
when an interrupt occurs on the pro- 
cessor. AMOVRM tests the flag, and 
if set, performs the update and re- 
turns a success indication. I f  the flag 
is clear, the AMOVRM instruction 
indicates failure, and the interpreter 
reprocesses the interrupted instruc- 
tion. 

Issues with Changing Memory 
VAX instruction atomicity ensures 
that an arithmetic instruction does 
not have any partially updated mem- 
ory locations, as viewed from the 
processor on which that instruction is 
executed. In a multiprocessing envi- 
ronment,  inspection from another 
processor could result in a percep- 
tion o f  partial results. 

Since an Alpha AXP processor 
accesses memory only in aligned 
longwords or  quadwords, it is there- 
fore not byte granular. To achieve 
byte granularity, VEST generates a 
load-locked/store-conditional code 
sequence, which ensures that a mem- 
ory location is updated as if it were 
byte granular. This sequence is used 
also to ensure interlocked access to 
shared memory. Longword-size up- 
dates to aligned locations are per- 
formed using normal load/store in- 
structions to ensure longword 
granularity. 

Many multiprocessing VAX pro- 
grams depend on byte granularity 
for memory update. VEST generates 
byte-granular code if the qualifier 

/PRESERVE=MEMORY_ 
A T O M I C I T Y  

is specified when translating an 
image. In addition, VEST generates 
strict read-write ordering code if the 
qualifier 

/PRESERVE = READ_WRITE._ 
ORDERING 

is specified when translating an 
image. 

Preserving VAX Exceptions 
Alpha AXP instructions do not have 

the same exception characteristics as 
VAX instructions; for instance, an 
arithmetic fault is imprecise, i.e., not 
synchronous with the instruction that 
caused it. The  Alpha AXP hardware 
generates an arithmetic fault that is 
mapped into an OpenVMS AXP 
high-performance arithmetic excep- 
tion (HPARITH) exception. To re- 
tain compatibility with VAX condi- 
tion handlers, the TIE  maps 
H P A R I T H  into a corresponding 
VAX exception when calling a trans- 
lated condition handler. Most VAX 
languages do not require precise ex- 
ceptions. For those that do, such as 
BASIC, VEST generates the neces- 
sary trap barrier (TRAPB) instruc- 
tions if 

/I~RESERVE = FLOATI  NG_ 
EXCEPTIONS 

is specified when translating an 
image. 

OpenVMS AXP and OpenVMS VAX 
Differences 
Functional Differences 
Most OpenVMS AXP system services 
are identical to their OpenVMS VAX 
counterparts. Services that depend 
on a VAX-specific mechanism are 
changed for the Alpha AXP architec- 
ture. The  TIE intervenes in such sys- 
tem services to ensure the translated 
code sees the old interface. 

For example, the declare change 
mode handler  ($DCLCMH) system 
service establishes a handler for VAX 
change mode to user (CHMU) in- 
structions. The handler is invoked as 
if it were an interrupt service rou- 
tine, required to use the VAX return 
from interrupt or exception (REI) 
instruction to return to the invoker's 
context. On OpenVMS AXP systems, 
the handler is called as a normal pro- 
cedure. To ensure compatibility, the 
TIE inserts its own handler when 
calling OpenVMS AXP $DCLCMH. 
When a CHMU is invoked on Alpha 
AXP computers, the T IE  handler 
calls the handler of  the translated 
image, using the same VAX-specific 
mechanisms that the handler ex- 
pects. 

Exception Handling 
OpenVMS AXP exception process- 
ing is almost identical to that per- 
formed in the OpenVMS VAX sys- 
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tern. The  major difference is that the 
VAX mechanism array needs only to 
hold the value of  two temporary  reg- 
isters, R0 and R1, whereas the Alpha  
AXP mechanism array needs to hold 
the value of  15 temporary  registers, 
R0, R1, and R16 through  R28. 

Complex Instructions 
Translat ing some VAX instructions 
would require  many Alpha  AXP in- 
structions. Instead, VEST generates 
code that calls a T IE  subroutine. 
Subroutines are implemented  in two 
ways: (1) hand-wri t ten native emula- 
tion routines, e.g., MOVC5, and (2) 
VEST-translated VAX emulat ion 
routines, e.g., POLYH. 

Together ,  VEST and TIE  can 
translate and run  most existing user- 
mode VAX binary images. As shown 
in Table 4, per formance  of  trans- 
lated VAX programs slightly exceeds 
the original goal. Performance de- 
pends heavily on the frequency of  
use of  VAX features that are not  
present  in Alpha  AXP machines. 

ULTRIX MIPS Translation 
The  translator that converts 
ULTRIX MIPS programs to DEC 
OSF/1 AXP programs is called mx. 
The  mx project  started after VEST 
was functional, and we took advan- 
tage of  the VEST common code base 
for much of  the analysis and Alpha  
AXP code assembly phases of  the 
translator.  In fact, about  half  of  the 
code in mx is compiled from the 
same source files as those used for 
VEST, with some architectural spe- 
cifics supplied by different  include 
files. The  C+ + language has proven 
quite valuable in this regard.  

mxr  is the run-t ime suppor t  sys- 
tem for translated programs.  It pro-  
vides services similar to TIE,  emulat- 
ing the ULTRIX MIPS environment  
on a DEC OSF/1 AXP system, mxr  is 
written in C+ +, C, and Alpha  AXP 
assembler. 

C h a l l e n g e s  
Creating a translator for the MIPS 
R2000/R3000 architecture presented 
a host of  new opportunit ies ,  along 
with some significant challenges. The  
basic structure of  the mx translator is 
considerably simpler than that of  
VEST. Both the source and the tar- 
get architectures are RISC machines; 

therefore,  the two instruction sets 
have a considerable similarity. Many 
instructions translate one for one. 
The  MIPS architecture has very few 
instruction side effects or  subtle ar- 
chitectural details, a l though those 
that are present  are particularly 
tricky. Fur thermore ,  the format  of  
an executable p rogram under  the 
ULTRIX system collects all code in a 
single contiguous segment  and 
makes it easy for mx to reliably f ind 
almost 100% of  the code in the MIPS 
application. The  system interfaces to 
the ULTRIX and DEC OSF/1 sys- 
tems are similar enough that most 
ULTRIX system calls have function- 
ally identical counterpar ts  under  the 
DEC OSF/1 system. 

The  challenges in mx stem from 
the fact that the source architecture 
is a RISC machine. For  example,  
DEC OSF/1 AXP is a 64-bit comput-  
ing environment ,  i.e., all pointers 
used to communicate with the oper-  
ating system are 64 bits wide. This 
environment  does not  present  a 
problem when the pointer  is passed 
in a register.  However,  when a 
pointer  (or a long data item, such as a 
file size) is passed in memory,  it must  
be converted between the 32-bit rep- 
resentation, used by the ULTRIX 
system, and the 64-bit AXP repre-  
sentation, even when the semantics 
of  the opera t ing  system call are the 
same on both systems. 

A significant challenge is the fact 

that our  users'  expectations for per- 
formance of  translated programs are 
much higher  than for VEST. Rea- 
soning that the source and target  
machines are similar, users expect 
mx to achieve a translated p rogram 
per formance  better  than that  of  the 
source program,  since Alpha  AXP 
processors are faster. Thus,  the per- 
formance goal was producing  a 
translated p rogram that runs at 
about the same speed as the original 
p rogram would run  on an MIPS 
R4000 machine with a 100MHz in- 
ternal clock rate. 

MaDDing  t h e  A r c h i t e c t u r e s  
It appears ,  at first glance, that we 
could simply assign each MIPS regis- 
ter to a cor responding Alpha  AXP 
register,  because each machine has 
32 genera l -purpose  registers. The  
translated code would then have two 
scratch registers, since the MIPS ar- 
chitecture does not allow user-level 
programs to use registers K0 and K 1, 
which are reserved for the opera t ing  
system kernel.  

Unfortunately,  translation re- 
quires more  than two scratch regis- 
ters. The  Alpha  AXP architecture 
does not have byte or  halfword (16- 
bit) loads or  stores, and the code se- 
quences for  pe r fo rming  these opera-  
tions require  four  or  five scratch reg- 
isters. Fur thermore ,  mx requires a 
base register to locate mxr  without 
having to load a 64-bit address con- 

Table 4. T r a n s l a t e d  VAX P e r f o r m a n c e ,  N o r m a l i z e d  t o  R a t l v e - c o m p l l e d  
OpeRVMS AXP Code  

2.2 
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3.1 

l ,U 

1.0 

1.0 

1.0 

1The DEC 7000 was running at a derated speed compared to production DEC 
7000s. 
2Timing information for this run is not available. 
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stant at each call. Finally, the MIPS 
architecture has more than 32 regis- 
ters, including the HI  and LO regis- 
ters used by the multiply-and-divide 
instructions, and a floating-point 
condition register, whose layout and 
contents do not correspond to the 
Alpha AXP floating-point condition 
register. 

In mx, we assign registers using 
standard compiler techniques. To 
assign registers to 33 MIPS resources 
(the 32 general registers plus one 64- 
bit register to hold both HI  and LO), 
certain registers are permanendy 
mapped, and other MIPS registers 
are kept in either AXP registers or  
memory. The  MIPS argument-pass- 
ing registers A0 through A3 are per- 
manently assigned to Alpha AXP 
registers R16 through R19, which 
are the argument  registers in the 
DEC OSF/1 AXP calling standard. 
This correspondence simplifies the 
work needed when mxr  must take 
arguments for an ULTRIX system 
call and pass them to a DEC OSF/1 
system call. Similarly, the argument  
return registers V0 and V1 are 
mapped to the Alpha AXP argument  
return registers R0 and R1. The  re- 
turn address registers and stack 
pointer registers o f  the two machines 
are also mapped. MIPS R0 is 
mapped to Alpha AXP R31, where 
both registers contain the same hard- 
wired zero value. We reserve Alpba 
AXP registers R22 through R24 as 
scratch registers and use them also 
when interfacing to mxr. We reserve 
Alpha AXP R14 as a pointer to an 
mxr communication area. Finally, we 
reserve three more registers as 
scratch registers for use by the code 
generator. 

The  remaining 16 Alpha AXP 
registers are available to be assigned 
to the remaining 23 MIPS resources. 
After the code is analyzed and we 
have register usage information, the 
16 most frequently used MIPS regis- 

ters are mapped to the 16 remaining 
Alpha AXP registers, and the re- 
maining registers are assigned to 
memory slots in the mxr communica- 
tion area. When a MIPS basic block 
uses one of  the slotted registers, mx 
assigns it to one o f  the scratch regis- 
ters. I f  the first reference reads the 
old contents o f  the register, mx gen- 
erates a load instruction from the 
communications area. I f  the value o f  
the MIPS resource changes in the 
basic block, the scratch register is 
stored in the communication area 
before the end of  the block. As in 
most compilers, if we run out of  reg- 
isters, a spill algorithm chooses a 
value to save in the communication 
area and frees up a register. 

Alpha AXP integer registers are 
64 bits wide, whereas MIPS registers 
are only 32 bits wide. We chose to 
keep all 32 bit values in Alpha AXP 
integer registers as sign-extended 
values, with the high 32 bits equal to 
bit 31. This approach occasionally 
requires mx to generate additional 
code to create canonical 32-bit inte- 
ger results, but the 64-bit compare 
operations do not need to change the 
values that they are comparing. 

The  floating-point architecture is 
more complex. Each of  the 32 MIPS 
floating-point registers is 32 bits 
wide. Only the even registers are 
used for single precision, and a 
double-precision number  is kept in 
an even-odd register pair. We map 
each pair o f  MIPS floating-point reg- 
isters onto a single 64-bit Alpha AXP 
floating-point register. Also, one 
Alpha AXP floating-point register 
represents the condition code bit of  
the MIPS floating-point control reg- 
ister. Thus, the mx code generator 
can use 14 scratch registers, mx goes 
to considerable effort to find paired 
loads and stores in the MIPS code 
stream and merge them into one 
Alpha AXP floating-point operation. 

MIPS single-precision operations 
cause problems with floating-point 
correspondence. Since the single- 
precision number  on MIPS machines 
is kept in only the even register o f  the 
register pair, the even and odd regis- 
ters in a pair are independent  when 
single-precision (or integer) opera- 
tions are done in the floating-point 
unit. On Alpha AXP machines, com- 
putation must be done on a value 

extended to double format in the 
whole 64-bit register. We defined two 
forms for values in Alpha AXP 
floating-point registers: computa- 
tional form, in which computation is 
done, and canonical form, which 
mimics the MIPS even and odd regis- 
ters. I f  a MIPS program loads an 
even register and uses this register as 
a single-precision value, mx loads the 
value from memory to be used com- 
putationally. I f  a MIPS program 
loads an even register only but does 
not use this register in the basic 
block, mx puts the 32-bit value into 
half o f  the Alpha AXP floating-point 
register. This permits correct behav- 
ior in the pathological case where 
half of  a floating-point number  is 
loaded in one place, and the other  
half is loaded in some other basic 
block. I f  a register is used as a single- 
precision number  in basic block with- 
out first being loaded, the code gen- 
erator inserts code to convert it f rom 
canonical to computational floating- 
point form. I f  a single-precision 
value has been computed in a block 
and is live at the end of  the block, it is 
converted to canonical form. 

mx inserts a register-mapping 
table into the translated program 
that indicates (1) which MIPS re- 
sources are statically mapped to 
which Alpha AXP registers and (2) 
which MIPS resources are normally 
kept in memory. This table allows 
mxr to find the MIPS resources at 
run time. 

Finding Code 
As with the VEST translator, mx 
finds code by starting at entry points 
and recursively tracing down the 
flow of  control, mx finds entry points 
using the executable-file header, the 
symbol table (if present), and feed- 
back from mxr  (if present). Finally, 
mx performs a linear scan of  the en- 
tire text section for unexamined 
longwords, mx analyzes any data that 
looks like plausible code but does not 
connect this data into the main flow 
graph. Plausible code consists o f  a 
series o f  valid MIPS instructions ter- 
minated by an unconditional transfer 
o f  control. 

While finding code and connect- 
ing the basic blocks into a flow graph, 
mx looks for the code sequence that 
indicates a switch statement, i.e., a 
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multi-way branch, usually through 
an element of  a table, mx finds the 
branch table and connects each of  
the possible targets as successors of  
the branch. 

Code Analysis 
Static analysis of  hundreds of  MIPS 
programs indicates that only 10 in- 
structions account for about 85% of  
all code. These instructions are LW, 
ADDIU, SW, NOP, ADDU, BEQ, 
JAL, BNE, LUI, and SLL. The  cor- 
responding sequences of  Alpha AXP 
code range from zero operation 
codes (opcodes) (for NOP, since the 
Alpha AXP architecture does not 
require NOPs anywhere in the code 
stream) to two opcodes (for SLL). 

Code analysis for source programs 
is much more important in mx than 
in VEST, because the coding idioms 
for many common operations differ 
between the Alpha AXP and MIPS 
processors. The  simple technique of  
mapping each MIPS instruction to a 
sequence of  one or more Alpha AXP 
instructions loses much of  the con- 
text information in the original pro- 
gram. 

For example, the idiom used to 
load a 32-bit constant into a register 
on MIPS machines is to generate a 
load upper  immediate (LUI) opcode, 
placing a 16-bit constant in the high- 
order  16 bits of  a register. This oper- 
ation is followed by an OR immediate 
(ORI) opcode, logically ORing a 16- 
bit zero-extended value into the reg- 
ister. The LUI corresponds exactly 
to the Alpha AXP load address high 
(LDAH) opcode. However, the 
Alpha AXP architecture has no way 
to directly ORing a 16-bit value into a 
register and cannot load even a zero- 
extended 16-bit constant into a regis- 
ter. When the high-order bit of  the 
16-bit constant is 1, the shortest 
translation for the ORI is three in- 
structions. The  mx translator scans 
the code looking for such idioms and 
generates the optimal two-instruc- 
tion sequence of  Alpha AXP code 
that performs the 32-bit load. No 
opcode exists that corresponds to the 
ORI,  but the results in the registers 
are correct. 

We thought we would never see a 
number  of  code possibilities. In  ret- 
rospect, this proved to be a mis- 
guided assumption. For example, we 

have seen programs that branch into 
the delay slot of  other instructions, 
requiring us to indicate that the delay 
slot instruction is a member of  two 
different basic blocks--the block it 
ends and the one it starts. We have 
observed programs that put software 
breakpoint (BREAK) instructions in 
the branch delay slot, and thus 
BREAK ends a basic block without 
being the last instruction. Some com- 
pilers schedule code so that half of  a 
floating-point register is stored and 
then reused before the other half is 
stored. The  general principle that we 
intuit from these observations is "if a 
code sequence is not expressly pro- 
hibited by the architecture, some 
program somewhere will use it." 

Code Generation 
After the program is parsed and ana- 
lyzed and the flow graph is built, the 
code generator is called. It builds the 
register-mapping table, then in turn, 
processes each basic block, generat- 
ing Alpha AXP code that performs 
the same functions as the MIPS code. 

At each subroutine entry, mx 
scans the code stream with a pattern- 
matching algorithm to see if the code 
corresponds to any of  a number  of  
standard MIPS library routines, such 
as strcpy. (Note that the ULTRIX 
operating system has no shared li- 
braries, so library routines are bound 
into each binary image.) I f  a corre- 
spondence exists, the entire subrou- 
tine is recursively deleted from the 
flow graph and replaced with a 
canned routine to perform the sub- 
routine's work on Alpha AXP proc- 
essors. This technique contributes 
significantly to the performance of  
translated programs. 

For each remaining basic block, 
the instructions are converted to a 
linked list of  intermediate opcodes. 
At first, each opcode corresponds 
exactly to a MIPS opcode. The  list is 
then scanned by an optimization 
phase, which looks for MIPS coding 
idioms and replaces them with ab- 
stract machine instructions that bet- 
ter reflect the idiom. For example, 
mx changes (1) loads o f  immediate 
values to a non-MIPS hardware load 
immediate (LI) instruction, (2) shift 
and add sequences to abstract opera- 
tions that reflect the Alpha AXP 
scaled add and subtract sequences, 

and (3) sequences that change the 
floating-point rounding mode (used 
to truncate a floating-point number  
to an integer) to a single opcode that 
represents the Alpha AXP convert 
operation with the chopped mode 
(/C) modifier. 

MIPS code contains a number  of  
common code sequences that cross 
basic block boundaries, but which 
can be compressed into a single basic 
block in Alpha AXP code. Examples 
of  these are the min and max func- 
tions, which map neatly onto a single 
conditional move (CMOVxx) in- 
struction in Alpha AXP code. The 
code generator looks for these se- 
quences, merges the basic blocks, and 
creates an extended basic block, 
which includes pseudo-opcodes that 
indicate the MIPS code idiom. 

After the optimizer completes the 
list of  instructions, it translates each 
abstract opcode to zero or more 
Alpha AXP opcodes, again building 
a linked list of  instructions. This pro- 
cess may permit further  improve- 
ments, so the optimizer makes a sec- 
ond pass over the Alpha AXP code. 

When processing a basic block, the 
code generator assumes that it has an 
unlimited number  of  temporary re- 
sources. Since this is not actually 
true, the code generator then calls a 
register assigner to allocate the real 
Alpha AXP temporary resources to 
the intermediate temporary regis- 
ters. The  register assigner will load 
and spill MIPS resources and gener- 
ate temporary registers as needed. 

Finally, the list of  Alpha AXP in- 
structions is assembled into a binary 
stream, and the instruction scheduler 
rearranges them to remove resource 
latencies and use the chip's multiple- 
issue capability. 

Image Formats 
The file format for input is the stan- 
dard ULTRIX extended common 
object file format (COFF). In most 
ULTRIX MIPS programs, the text 
section starts at 00400000 (hexadeci- 
mal) and the data at 10000000 (hexa- 
decimal). In virtually all programs, a 
large gap exists between the virtual 
address for the end of  text and the 
start of  the data section. When mx 
creates the output  image, it places 
the generated Alpha AXP code after 
the MIPS code and before the MIPS 

©Om~UNS©ATSONS OF TSm I ~ / F e b r u a r y  1993/VoL36, No.2 7 ~  



www.manaraa.com

MIPS code separately from the 
Alpha AXP code. 

The  translated image is not in 
DEC OSF/1 AXP executable format. 
Instead, it looks like a MIPS COFF 
file, but with the first few bytes 
changed to the string "#!/usr/bin/ 
mxr". 

data. This allows the program to 
have one large text section. The  
Alpha AXP code begins at an Alpha 
AXP page boundary, so that we can 
set the memory protection on the 

Executing a Translated Program 
When a translated image is run on 
DEC OSF/1 A X E  its modified 
header  invokes mxr  first, mxr uses 
the memory map (mmap) system call 
to load the translated program at the 

Table 5. Translated MIPS Relative P e r f o r m a n c e  

espresso  2.4 1.1 (1.0) a 
li 1.6 1.2 0 . 0 )  
eqntott 1.6 2.1 (1,0) 
compress 2.7 1.0 (1.0) 
SC 2 w 

gcc 2.1 1.2 (1.0) 
Geometric Mean 2.0 1.3 (1.0) 

(without sc) 

spice2g6 - -  - -  
doduc 1.7 1.0 
mdljdp2 2.7 1.0 
wave5 1.1 1.0 
tomcatv 3.0 1.0 
ora 1.5 1.0 
alvinn 1.6 1.0 
ear 1.7 1.0 
mdljsp2 1.4 1.0 
swm256 2,3 1.0 
su2cor 2.7 1.0 
hydro2d 2.9 1.0 
nasa7 2.6 1.0 
fpppp 2.2 1.0 
Geometric Mean 2.0 1.0 

(without spice2g6) 

1The values in parentheses are from running once, then retranslating with the run- 
time feedback from the first run; this gave a significant performance difference only 
for the programs shown. 
2Timing information for this run is not available. 
NOTE: The larger the number, the slower the performance. These performance 
numbers were measured on derated field test hardware and software at various 
times during 1992; production results will vary somewhat. The SPEC benchmarks 
are written in FORTRAN and C; no conclusions should be drawn about other 
classes of programs written in other languages. 

NOTE: The larger the number, the slower the performance. These performance 
numbers were measured on derated field test hardware and software at various 
times during 1992; production results will vary somewhat. The SPEC benchmarks 
are written in FORTRAN and C; no conclusions should be drawn about other 
classes of programs written in other languages. 

same virtual address that it would 
have had under  the ULTRIX operat- 
ing system, mxr  resets the protection 
of  the MIPS code to read/no-write/ 
no-execute, the Alpha AXP code to 
read/no-write/execute, and the data 
to read/write/no-execute. 

Then  mxr  allocates a communica- 
tion area and initializes Alpha AXP 
R14 to point to this area. The  com- 
munication area contains save areas 
for MIPS resources, initialized point- 
ers to mxr  services routines, and 
other  scratch space, mxr  then con- 
structs new command argument  
(argv) and envi ronment  vectors as 
32-bit wide pointers (as the MIPS 
program expects), arranges to inter- 
cept certain signals from the DEC 
OSF/1 AXP system, and transfers 
control to the translated start address 
of  the program. 

When a system signal is delivered 
to the program, control goes to the 
signal intercept code in mxr. This 
code transforms the signal context 
structure from the DEC OSF/1 AXP 
system and constructs a ULTRIX 
MIPS style context, which it passes 
then to the translated signal handler. 

Certain signals are processed spe- 
cially. For instance, a program that 
attempts to transfer control to a loca- 
tion containing M1PS code rather 
than translated code gets a segmen- 
tation violation, since the MIPS code 
is not executable. This situation can 
occur if a routine modifies its return 
address to be a MIPS address con- 
stant, mxr  will examine the target 
address and, if  it corresponds to the 
start of  a pretranslated MIPS basic 
block, divert the flow of  control to 
the translated code for that block. I f  
not, mxr enters the MIPS inter- 
preter. The  interpreter  proceeds to 
emulate the M1PS code until a trans- 
lated point is reached, mxr  then 
resynchronizes its machine state and 
reenters the translated code. 

Translation Goals and Classes of 
Programs Not Supported 
Our  goal was to translate most user 
mode MIPS programs compiled for a 
MIPS R2000 or R3000 machine run- 
ning U L T R I X  Release 4.0 (or later) 
to run identically on the DEC OSF/I 
AXP system with acceptable perfor-  
mance. As shown in Table 5, perfor- 
mance of  translated MIPS programs 
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meets or  exceeds the original goal. 
Due to ext reme technical obsta- 

cles, some classes of  programs will 
never be suppor ted  by mx. We de- 
cided not to translate programs that 
use privileged opcodes or system 
calls or that need to run  with su- 
peruser  privileges. In cases where 
the file system hierarchy differs be- 
tween the ULTRIX and DEC OSF/1 
AXP systems, programs that expect  
files to be in part icular  places or  in a 
part icular  format  may fail. Similarly, 
programs that read /dev/kmem and 
expect  to see an ULTRIX MIPS 
memory layout fail. 

Certain other  classes o f  programs 
are not  current ly suppor ted,  but  are 
technically feasible. These  include 
big-endian MIPS programs from 
non-Digital MIPS environments,  
programs that use R4000 or R6000 
instructions that are not present  on 
the R3000 model,  programs that 
need to be muhiprocessor  safe, and 
programs that require  certain cate- 
gories of  precise exception behavior. 

Summary 
Building successful, turnkey binary 
translators requires hard  work but  
not magic. We built two different  
translators, VEST and rex. In both 
cases, the old and new environments  
are, by design, quite similar in funda- 
mental  data types, memory address-  
ing, register and stack usage, and 
operat ing system services. Transla- 
tors between dissimilar architectures 
or opera t ing  systems are a different  
matter.  Translat ing the code might  
be a reasonably s traightforward task. 
However,  emulat ing a run-t ime envi- 
ronment  in which to execute the 
code might  present  insurmountable  
technical and business obstacles. 
Without  captur ing the environment,  
an instruction translator would be of  
n o  USC. 
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