
www.manaraa.com

B i n a r y T r a n s l a t i o n

Richard L. Sites, Anton Chernoff Matthew B. Kirk,
Maurice P. Marks, and Scott G. Robinson

hen Digital started to design
the Alpha AXP architecture
in the fall of 1988, the Alpha
A X P team was concerned
with running ex is t ing
VAX TM code and MIPS TM

code on the new Alpha AXP
computers [5, 6]. To get
full performance on a new
computer architecture, an
application must be ported
by rebuilding, using native
compilers. For a single pro-

gram written in a standard programming language,
this is a matter of recompile and run. A complex soft-
ware application can be built, however, from hundreds
of source pieces using dozens of tools. A native port of
such an application is only possible when all parts of
the build path are running on the new architecture.

Therefore, having a way to run an existing (old
architecture) binary version of a complex application
on a new architecture is an important interim measure.
It allows a user to get applications up and running
immediately, with minimal porting effort. Once a
user's everyday environment is established, appli-
cations can be rebuilt over time, using native code or

partially native and partially old code.
Several techniques are used in the

industry to run the b inary code of an
old architecture on a new architecture.
Figure 1 shows four common techni-
ques, from slowest to fastest:

• Software interpreter (e.g., Insignia
Solutions' SoftPC)
• Microcoded emulator(e.g. , PDP-11
compatibi l i ty mode in early VAX
computers)
• Binary t r ans la to r (e.g., H u n t e r
System's X D O S)
• Native compiler

A software interpreter is a p rogram
that reads instructions of the old archi-
tecture one at a time, performing each
opera t ion in tu rn on a software-
maintained version of the old architec-
ture's state. Interpreters are not very
fast, but run on a wide variety of
machines and can faithfully reproduce
the behavior of self-modifying pro-
grams, programs that branch to data,
programs that branch to a checksum of
themselves, and so forth. Caching
interpreters gain speed by retaining
predecoded forms of previously inter-
preted instructions.

A microcoded emulator operates
similarly to a software interpreter but
usually with some key hardware assists
to decode the old instructions quickly
and to hold hardware state information
in registers of the micromachine. An
emulator is typically faster than an

C O M M U N I C A T I O N S O F T H I I A¢II/February 1993/Vol.36, No.2 1 9

www.manaraa.com

interpreter but can run only on a
specific microcoded new machine.
This technique cannot be used to run
existing code on a reduced instruction
set computer (RISC) machine, since
RISC architectures do not have a
microcoded hardware layer underlying
the visible machine architecture.

A translated binary program is a
sequence of new-architecture in-
structions that reproduces the behav-
ior o f an old-architecture program.
Typically, much of the state informa-
tion of the old machine is kept in reg-
isters in the new machine. Translated
code reproduces faithfully the calling
standard, implicit state, instruction
side effects, branching flow, and
other artifacts o f the old machine.
Translated programs can be much
faster than interpreters or emulators,
but slower than native-compiled pro-
grams.

Translators can be classified as ei-

ther (1) bounded translation systems,
in which all the instructions o f the
old program must exist at translation
time and must be found and trans-
lated to new instructions [2, 3, 7], or
(2) open-ended translation systems,
in which code also may be discov-
ered, created, or modified at execu-
tion time. Bounded systems usually
require manual intervention to find
100% of the code; open-ended sys-
tems can be fully automatic.

To run existing VAX and MIPS
programs, an open-ended system is
absolutely necessary. For example,
some customer programs write li-
cense-check code (VAX instructions)
to memory and branch to that code.
A bounded system fails on such pro-
grams.

A native-compiled program is a
sequence of new-architecture in-
structions produced by recompil-
ing the program. Usually, native-
compiled programs use newer, faster
calling conventions than old pro-
grams. With a well-tuned optimizing
compiler, native-compiled programs
can be substantially faster than any of
the other choices.

Most large programs are not self-
contained; they call library routines,
windowing services, databases, and
toolkits, for example. Also, these

F igure 1.
C o m m o n

t e c h n i q u e s
f o r r u n n i n g

olcl c o d e
on n e w

c o m p u t e r s

F igure 2.
B inary

t r a n s l a t i o n
ancl e x e c u t i o n

p rocess

programs (directly or indirectly) in-
voke operating-system services. In
simple environments with a single
dominant library, it can be sufficient
to rewrite that library in native code
and to interpret user programs, par-
ticularly user programs that actually
spend most of their time in the li-
brary. This strategy is commonly
used to run Windows ~ and Macin-
tosh ~° programs under the Unix ~
operating system.

In more robust enviromnents, it is
not practical to rewrite all the shared
libraries by hand; collections o f doz-
ens or even hundreds o f images
(such as typical VAX ALL-IN-1 ~
systems) must be run in the old envi-
ronment, with an occasional excur-
sion into the native operating system.
Over time, it is desirable (1) to re-
build some images using a native
compiler while retaining other im-
ages as translated code and (2) to
achieve interoperability between
these old and new images. The inter-
face between an old environment
and a new one typically consists of
'~jacket" routines that receive a call
using old conventions and data struc-
tures, reformat the parameters, per-
form a native call using new conven-
tions and data structures, reformat
the result, and return.

The Alpha AXP Migration Tools
team considered running old VAX
binary programs on Alpha AXP
computers using a simple software
interpreter, but rejected this method
because the performance would be
too slow to be useful. The idea of
using some form of microcoded
emulator was rejected also. This
technique would compromise the
performance of a native Alpha AXP
implementation, and VAX compati-
bility would be nearly impossible to
achieve without microcode, which is
inconsistent with a high-speed RISC
design.

Therefore, we turned to open-
ended binary translation. We were
aware of the earlier Hewlett-Packard
binary translator, but its single-image
HP ~ 3000 input code looked much
simpler to translate than large collec-
tions o f hand-coded VAX assembly
language programs [1]. One team
member wrote a VAX-to-VAX bi-
nary translator as a p roof o f concept,
which looked feasible, so we set the

1 0 February 1993/Vol.36, No.2 /C~UMnUr.,~nI,"J"nUONI OP 'UMllU ACre

www.manaraa.com

following goals:

1. Open-ended (completely auto-
matic) translation of almost all user-
mode applications from the
OpenVMS VAX system to the
OpenVMS AXP system.
2. Open-ended translation of almost
all user-mode applications from the
ULTRIX system to the DEC OSF/1
system.
3. Run-time performance of trans-
lated code on Alpha AXP computers
that meets or exceeds the perfor-
mance of the original code on the
original architecture.

4. Optional reproduction of subtle
old-architecture details, at the cost of
run-time performance, e.g., complex
instruction set computer (CISC) in-
struction atomicity for multithreaded
applications and exact arithmetic
traps for sophisticated error hand-
lers.
5. I f translation is not possible, gen-
eration of explicit messages that give
reasons and specify what source
changes are necessary.

While creating the VAX translator,
we discovered the process of building
flow graphs and tracking data de-
pendencies yielded information
about source code bugs, perfor-
mance bottlenecks, and dependen-
cies on features not available in all
Alpha AXP operating systems. This
analysis information could be valu-
able to a source code maintainer.
Thus, we added one more product
goal:

6. Optional source analysis informa-
tion.

To achieve these goals, the team
created two binary translators:
VEST, which translates OpenVMS
VAX binary images to OpenVMS
AXP images, and mx, which trans-
lates ULTRIX MIPS images to DEC
OSF/1 AXP images. However, binary
translation is only half the migration
process. As shown in Figure 2, the
other half is to build a run-time envi-
ronment in which to execute the
translated code. This second half
must bridge any differences between
old and new operating systems, for
example, calling standards, and ex-
ception handling. For open-ended
translation, this part of the process

must also include a way to run old
code not discovered (or nonexistent)
at translation time. The translated-
image environment (TIE) and mxr
run-time environment support the
VEST and mx translators, respec-
tively, by reproducing the old oper-
ating environments. Each environ-
ment supports open-ended
translation by including a fallback
interpreter of old code and extensive
run-time feedback to avoid using the
interpreter except for dynamically
created code. Our design philosophy
is to do everything feasible to stay out
of the interpreter, rather than to in-
crease the speed of the interpreter.
This approach gives better perfor-
mance over a wider range of pro-
grams than using pure interpreters
or bounded translation systems.

The remainder of this article dis-
cusses the two binary translator/run-
time environment pairs available for
Alpha AXP computers: VEST/TIE
and mx/mxr. To establish a basis for
the discussion, the reader must un-
derstand the following terms: datum,
alignment, instruction atomicity,
granularity, interlocked update, and
word tearing. (See box.)

VEST: Translating a VAX Image
Translating a VAX image involves
two main steps: analyzing VAX code
and generating Alpha AXP code.
The translated images produced are
OpenVMS AXP images and may be

run just like native images [4]. Trans-
lated images run with the assistance
of the translated image environment,
discussed later. The VEST binary
translator is written in C + + and
runs on VAX, MIPS, and Alpha AXP
machines. The TIE is written in the
OpenVMS system programming lan-
guages, Bliss, and Alpha AXP assem-
bler.

To locate VAX code, VEST starts
disassembling code at known entry
points and traces the program's flow
of control recursively. Entry points
come from main and global routines,
debug symbol table entries, and op-
tional information files (including
run-time feedback from the TIE).

As VEST traces the program, it
builds a flow graph that consists of
basic blocks (i.e., straight-line code
sequences) annotated with informa-
tion derived from parsing instruc-
tions. Then, VEST performs several
analyses on the flow graph to propa-
gate context information to each
basic block and eliminate unneces-
sary operations. Context information
includes condition code usage, regis-
ter contents, stack depth, and other
information that allows VEST to
generate optimized code.

Analysis is important for achieving
good performance. For example, no
condition codes exist in the Alpha
AXP architecture. Without analysis it
would be necessary to compute con-
dition codes for each VAX instruc-

C ~ I W U N I I C J l L T I O N l l l 0P'1"1411 A~'M/February 1993/Vol.36, No.2 ~

www.manaraa.com

tion even if the codes were not used.
Furthermore, several forms of analy-
sis were invented to allow correct
translation. For example, VEST de-
termines automatically if a subrou-
tine does a normal return.

Code analysis can detect many
problems, including some that indi-
cate latent bugs in the source image.
For example, VEST can detect
uninitialized variables, improperly
formed VAX CASE instructions,
stack depth mismatches along two
different paths to the same code (the
program expects data to be at a cer-
tain stack depth), improperly formed
returns from subroutines, and modi-
fications to a VAX call frame. A la-
tent bug in the source image should
be fixed, since the translated image
may demonstrate incorrect behavior
due to that bug.

Also, analysis detects the use of
unsupported OpenVMS features
including unsupported system ser-
vices. The source image must be
modified to eliminate the use o f
these features.

Some problems reported by VEST
result f rom code that is hackish in
nature. For example, we found code
that expects a call mask at an entry
point to be executed as a no-op in-
struction so that the code preceding
the subroutine can simply execute
the call mask, rather than go through
the overhead of a VAX j u m p (JMP)
instruction. VEST reproduces the
behavior of the VAX program, even
if this behavior is a result of luck.

A VEST-generated flow graph is
displayed in Figure 3. Dashed lines
represent code paths followed if a
conditional branch is taken. Solid
lines indicate fall-through paths. A
problem is highlighted by a wide,
dashed pointer whose bottom end
indicates the basic block in which the
problem was uncovered. Full blocks
show the path that reveals the error;
empty blocks show basic blocks that

are not in the error path. In Figure 3,
a path exists by which register 3 (R3)
may be used without being set if the
VAX BNEQ (branch if the register
does not equal zero) instruction in
the second basic block is true the first
time through the code sequence.

Code Generation
The VEST translator generates code
by converting each VAX instruction
into zero or more Alpha AXP in-
structions. The architecture map-
ping is straightforward because there
are more Alpha AXP registers than
VAX registers. The VAX architec-
ture has only 15 registers, which are
used for both floating-point and in-
teger operations. The Alpha AXP
architecture has separate integer and
floating-point registers. VAX regis-
ters R0 through R14 are mapped to
Alpha AXP R0 through RI4 for all
operations except floating point.
Registers R12, R13, and RI4 retain
their VAX designations as argument
pointer, frame pointer, and stack
pointer, and R15 is used to resolve
PC-relative references. Floating-
point operations are mapped to F0
through F14.

The VAX architecture has condi-
tion codes that may be referenced
explicitly. In translated images, con-
dition codes are mapped into R22
and R23. Similar to the HP 3000
translator, R23 is used as a fast con-
dition code register for positive/
negative/zero results [1]. R22 con-
tains all four condition code bits,
which are calculated only when nec-
essary. All remaining Alpha AXP
registers are used as scratch registers
or for OpenVMS AXP standard calls.

VEST connects simple branches
directly to their translated targets.
VEST performs backward symbolic
execution of VAX instructions to re-
solve as many computed branch tar-
gets as feasible. I f more than one
possible computed target exists, a
run-time lookup is done on the VAX
target address. I f the lookup fails to
find a translated target, a fallback
VAX interpreter is used, as described
later. Unlike bounded translation
systems, which must achieve 100%
resolution o f computed targets, the
VEST and mx binary translators re-
quire no manual intervention.

Translated Images, Files Used
A translated image has the same for-
mat as an OpenVMS AXP image and
contains the original OpenVMS VAX
image as well as the Alpha AXP in-
structions that were generated for
the VAX code. The run-time VAX
interpreter in the TIE needs the
original VAX instructions as a fall-
back. (Also, some error handlers look
up the call stack for pointers to spe-
cific VAX instructions.) The ad-
dresses of statically allocated data in
the translated image are identical to
their VAX addresses. The image
contains a VAX-to-Alpha AXP ad-
dress-mapping table for use during
lookups and may contain an instruc-
tion atomicity table, described later.

Translated images use the
OpenVMS VAX calling standard.
Native images use different conven-
tions, but translated images inter-
operate with native or translated
shareable images. Automatic jacket-
ing services are provided in the TIE
to convert calls using one set o f con-
ventions into the other. In many
cases, jacketing services permit sub-
stitution of a native shareable image
for a translated shareable image
without modification. However, a
jacket routine is sometimes required.
For example, on OpenVMS AXP sys-
tems, the translated Fortran run-
time library, FORRTL_TV, invokes
the native Alpha AXP library
DEC$FORRTL for I/O-related sub-
routine calls. DEC$FORRTL has a
different interface than FORRTL
has on an OpenVMS VAX system.
For these calls, FORRTL_TV con-
tains hand-written jacket routines.

Translating an image requires
only one f i le--a VAX-executable
image. Several optional files make
translation more effective:

1. Image information files (IIFs).
VEST creates IIFs automatically to
provide information about shareable
image interfaces. The information
includes the addresses of entry
points, names of routines, and re-
source utilization.
2. Symbol information files (SIFs).
VEST generates SIFs automatically
to control the global symbol table in a
translated shared library, facilitating
interoperation between translated
and native images.

72 February 1993/Vo].36, No,2 /¢OIMMUNICATIII:)NIS IDPTHII A C M

www.manaraa.com

Figure 3.
VEST-generated

f l o w g raph s h o w i n g
un in l t ia l l zed

var iab le

3. Hand-edited information files
(HIFs). The TIE generates HIFs au-
tomatically, which may be hand-
edited to supply information that
VEST cannot deduce. HIFs contain
directives to tell VEST about unde-
tected entry points, to force it to
change specific assumptions about an
image during translation, and to pro-
vide known interface properties to be
propagated into an IIF.

VEST Performance Considerations
In evaluating translated-code perfor-
mance, we recognized that there was
a significant trade-off between the
performance and accuracy of emu-
lating the VAX architecture. VEST
permits users to select several archi-
tectural assumptions and optimiza-
tions, including:

• D-float precision. The Alpha
AXP architecture provides hardware
support for D-float with only 53-bit
mantissas, whereas the VAX archi-
tecture provides 56-bit mantissas.
The user may select translation with
either 53-bit hardware support
(faster) or 56-bit software support
(slower).
• Alignment. Alpha AXP instruc-
tions support only naturally aligned
longword (32-bit) and quadword (64-
bit) memory operations. Unaligned
memory operations cause alignment
faults, which are handled transpar-
ently by software at significant run-
time expense. The user may direct
VEST to assume that data references
are unaligned whenever alignment
information is unavailable.
• Instruction atomicity and memory
granularity. Multitasking and multi-
processing programs may depend on
instruction atomicity and memory
operation characteristics similar to
those of the VAX architecture. VEST
uses special code sequences to pro-
duce exact VAX memory character-
istics. VEST and the T IE cooperate
to ~nsure VAX instruction atomicity
when instructed to do so.

Untranslatable Images
Some characteristics make Open-

i i i ̧;/ : : # i i ! ! ; i ii!iii~ i)i! i i i ;!ii; !i ! i !!i!~!i ;!!!i~iii!ii iilil !i; !!ili!i !! !! j!!)!i!: i)ii!~ii!; i !il ̧I! ¸

8070 CE
DH RYSTONE\Proc2\504 [C]
R3 used
%VEST-I-NONSTDCALLU, PICKY: Non-standard call uses R3.

mask=O01C

3072
DH RYSTON E\PROC2\504 :!~;":~':"
\504 OneToFifty *lntParlO; '~'~;~.
\509 IntLoc = *lntParlO + 10; ':~1
SUBL2 S A #04,SP
MOVAB 00002COC,R2 ":'i~i~,
MOVAB 00002C14,R4
ADDL3 S ^ #OA,@O4(AP),R1

O0010BDC: LDA R16,FFFC(R14)
O0010BEO: BIC R16,#F,R16
O0010BE4: CMPULT R16,R36,R17
O0010BE8: CMOVNE R17,R16,R30

* O0010BEC: LDL R18,4(R12)
* O0010BFO: SUBL R14,#4,R14
* O0010BF4: LDA R2,ACOC(R15)
* 00010BF8: LDL R18,0(R15)

O0010BFC: LDA R4,AC14(R15)
00010C00: ADDL R18,#A,R1

3088
DHRYSTONE\Proc2k512
\512 if (CharlGIob ==21')
CMPB (R2),#41
BNEQ 00003097
* 00010C04: LDQU R20,O(R2)

00010C08: MOV 41.R21
O0010COC: EXTBL R30,R2,R19
00010C10: CMPEQ R19,R21,R24

* 00010014: BEQ R24.10C30

3097
DHRYSTONE\Proc2\518
k518 if (EnumLoc = = Identl)
TSTL R3
BNEQ 00003O88
* 00010C30: BNE R3,10C04

I {. {

/

R
g

J

I
.

8070_CE 1 DHRYSTONE\Proc2~504 [C]
R3 used
%VEST-I-NONSTDCALLU, PICKY: Non-standard call uses R3.

COMMUNnCAtmONSO~tNEACM/Feb rua ry 1993/Vol.36, No,2 7 3

www.manaraa.com

modifications, because the image
formats are different.

VMS VAX images untranslatable,
including:

• Exception handler issues. Images
that depend on examining the VAX
processor status longword (PSL) dur-
ing exception handl ing must be
modified, because the VAX PSL is
not available within exception hand-
lers.
• Direct reference to undocumented
system services. Some software con-
tains references to unsuppor ted and
undocumented system services, such
as an internal-to-VMS service, which
parses image symbol tables. VEST
highlights these references.
• Exact VAX memory management
requirements. Images that depend
on exact VAX memory management
behavior do not function proper ly
and must be modified. These images
include those that depend on VAX
page size or that expect certain ob-
jects to be m a p p e d to part icular ad-
dresses.
• Image format. Programs that use
images as data are not able to read
OpenVMS AXP images without

TIE Design O v e r v i e w
The run-t ime translated-image envi-
ronment , TIE, assists in executing
translated OpenVMS VAX images
under the OpenVMS AXP opera t ing
system. Figure 4 and Table 1 show
the contents of TIE.

Complications may occur when
translated OpenVMS VAX images
are run under the OpenVMS AXP
opera t ing system: failure to find all
code dur ing translation, VAX in-
struction guarantees, instruction ato-
micity, memory update , and preserv-
ing VAX exceptions.

Failure to Find All Code During
Translation
When the VEST binary translator
encounters a branch or subroutine
call to an unknown destination,
VEST generates code to call one of
the T IE lookup routines. The lookup
routines map a VAX instruction ad-
dress to a translated Alpha AXP code
address. I f an address mapping ex-
ists, then a t ransfer to the translated
code is per formed. Otherwise, the
VAX in te rpre te r executes the desti-
nation code. When the VAX inter-
pre ter encounters a flow-of-control
change, it checks for re turns to trans-
lated code. I f the target o f the flow
change is t ranslated code, the inter-
p re te r exits to this code. Otherwise,

Figure 4.
VEST

run- t ime
e n v i r o n m e n t

Translated Main I
and Shareable I I ,Z,:',:,k: I

images I

/ liiiiii" :;'k i; "iiiiiiii ii!i!iil "Ex2e;;;jj" iiiiiiiiiii!ii;i'"Sys' ;m""'iiiiiiii
/ H ,nte,ace Hand,ng li i!i i i i il Callbacks ii i i l

Jacketing Exoept'on l::i::::i::i::i::il S,stemSe ices
iiiii~:~!i~iiii~j:E~i~i!iiE~:~:!~i~ii~:i:~ | Interface I . ~ j Handling Iii~i~i[Emulation ii~i~i~!

i!iiiiiii!i!iiiiii!!iiiiiii!i!iiiiiii!iiiiiiiiiiiiiiiiiiii iiii ii!iiiiii ii ! iii i!i ii i ii ! !i i iiii i ii ii ii iii !iii!ii i i ! iiiii iiii i i iiiiii i iiiiii ii!iii ii iiiiiiiiiiii!iiiiiiiiiiiiiiiiiiiiiiiiliiii!i
i~iiiiiiiiiiiiiiii!iiii!iiii!iiii!iiOiiiiiiii!iiiiiiiii! ... Mfi na'ger'"" ~iiii ~i~i;ii~i~!iiiiiiiiiiiiiiiiiiii!iii!iE~i~ii

:.!!ii!i!i!!!iii!i!i!!!!ii!i!!!!!!iiE!l Interpreter I;i!iii!i!i!!!!iiii!i:i!i!iii!i!i:!!i!i!i!i!iii!i!i!i!i!i!i!i!i!i!iiiiiii!! Instructions li!i!i!i!i!i!iii!i!i!i!iii!i!i !

the in te rpre te r continues to in terpre t
the target.

Lookup operat ions that t ransfer
control to the in te rpre te r record the
start ing VAX code address in an H I F
file entry. The VAX image can be
retranslated then with the HIF infor-
mation, result ing in an image that
runs faster.

Lookup routines are used also to
call native Alpha AXP (nontrans-
lated) routines. The TIE supplies the
required special autojacketing pro-
cessing that allows in teropera t ion
between translated and native rou-
tines, with no manual intervention.
At load time, each translated image
identifies itself to the TIE and sup-
plies a mapping table used by the
lookup routines. The TIE maintains
a cache o f translations to speed up
the actual lookup processing.

Every translated image contains
both the original VAX code and the
cor responding Alpha AXP code.
When a translated image identifies
itself, the T I E marks its original VAX
addresses with the page protect ion
called f a u l t on execute (FOE). An
Alpha AXP processor that at tempts
to execute an instruction on one o f
these pages generates an access viola-
tion fault, which is processed by a
TIE condit ion handler to convert the
FOE fault into an appropr ia te desti-
nation address lookup operat ion. For
example, the FOE might occur when
a translated rout ine re turns to its
caller. I f the caller was in terpreted,
then its re turn address is a VAX code
address instead o f a translated VAX
(Alpha AXP code) address. The
Alpha AXP processor at tempts to
execute the VAX code and generates
a FOE condition. The TIE condit ion
handler converts this into a JMP
lookup operat ion.

VAX Instruction Guarantees
Instruction guarantees are charac-
teristics of a compute r architecture
that are inherent to instructions exe-
cuted on that architecture. For ex-
ample, on a VAX computer , if in-
struction 1 writes data to memory
and instruction 2 writes data to mem-
ory, a second processor must not see
the write from instruction 2 before
the write from instruction 1. This
p roper ty is called strict read-write

74 February 1993/Vo1.36, No.2 / ¢ O M M U N I r . * A T I O N S O F T H E ACI~J

www.manaraa.com

ordering.
The VEST/TIE pair can provide

the illusion that a single CISC in-
struction is executed in its entirety,
even though the underlying transla-
tion is a series of RISC instructions.
VEST/TIE can also provide the illu-

Tab le 1. TIE C o n t e n t s

sion of two processors updating adja-
cent memory bytes without interfer-
ence, even though the underlying
RISC instructions manipulate four
or eight bytes at a time. Finally,
VEST/TIE can provide exact mem-
ory read-write ordering and arith-

metic exceptions, e.g., overflow. All
these provisions are optional and
require extra execution time. Tables
2 and 3 show the visibility differences
between various guarantees on VAX
and Alpha AXP systems as well as for
translated VAX programs.

Tab le 2. Single P rocessor G u a r a n t e e s

Tab le 3. Mult iple P rocessor G u a r a n t e e s

COMMU#ICATIOUlOF'I'HBACM/February 1993/VoL36, No.2 7 5

www.manaraa.com

special Considerations for
Instruction Atomicity
The VAX architecture requires that
interrupted instructions complete or
appear never to have started. Since
translation is a process of converting
one VAX instruction to potentially
many Alpha AXP instructions, run-
time processing must achieve this
guarantee o f instruction atomicity.
Hence, a VAX instruction atomicity
controller (IAC) was created to ma-
nipulate Alpha AXP state to an
equivalent VAX state. When a trans-
lated asynchronous event-processing
routine is called, the IAC is invoked.
The IAC examines the Alpha AXP
instruction stream and either (1)
backs up the interrupted program
counter to restart at the equivalent
VAX instruction boundary or (2)
executes the remaining instructions
to the next boundary. Many VAX
programs do not require this guar-
antee to operate correctly, so VEST
emits code that is VAX instruction
atomic only if the qualifier

/PRESERVE= INSTRUCTION_
A T O M I C I T Y

is specified when translating an
image.

VEST-generated code consists of
four sections that are detected by the
IAC. These sections have the follow-
ing functions:

• Get operands to temporary regis-
ters
• Operate on these temporary regis-
ters
• Atomically update VAX results
that could generate side effects (i.e.,
an exception or interlocked access)
• Perform any updates that cannot
generate side effects (e.g., register
updates)

The VAX interpreter achieves
VAX instruction atomicity by using
the atomic-move, register to memory
(AMOVRM) instruction, which is

implemented in privileged-architec-
ture library (PAL) subroutines and
which updates a contiguous region of
memory containing VAX state with-
out being interrupted. At the begin-
ning of each interpreted VAX in-
struction, a read-and-set-flag (RS)
instruction sets a flag that is cleared
when an interrupt occurs on the pro-
cessor. AMOVRM tests the flag, and
if set, performs the update and re-
turns a success indication. I f the flag
is clear, the AMOVRM instruction
indicates failure, and the interpreter
reprocesses the interrupted instruc-
tion.

Issues with Changing Memory
VAX instruction atomicity ensures
that an arithmetic instruction does
not have any partially updated mem-
ory locations, as viewed from the
processor on which that instruction is
executed. In a multiprocessing envi-
ronment, inspection from another
processor could result in a percep-
tion o f partial results.

Since an Alpha AXP processor
accesses memory only in aligned
longwords or quadwords, it is there-
fore not byte granular. To achieve
byte granularity, VEST generates a
load-locked/store-conditional code
sequence, which ensures that a mem-
ory location is updated as if it were
byte granular. This sequence is used
also to ensure interlocked access to
shared memory. Longword-size up-
dates to aligned locations are per-
formed using normal load/store in-
structions to ensure longword
granularity.

Many multiprocessing VAX pro-
grams depend on byte granularity
for memory update. VEST generates
byte-granular code if the qualifier

/PRESERVE=MEMORY_
A T O M I C I T Y

is specified when translating an
image. In addition, VEST generates
strict read-write ordering code if the
qualifier

/PRESERVE = READ_WRITE._
ORDERING

is specified when translating an
image.

Preserving VAX Exceptions
Alpha AXP instructions do not have

the same exception characteristics as
VAX instructions; for instance, an
arithmetic fault is imprecise, i.e., not
synchronous with the instruction that
caused it. The Alpha AXP hardware
generates an arithmetic fault that is
mapped into an OpenVMS AXP
high-performance arithmetic excep-
tion (HPARITH) exception. To re-
tain compatibility with VAX condi-
tion handlers, the TIE maps
H P A R I T H into a corresponding
VAX exception when calling a trans-
lated condition handler. Most VAX
languages do not require precise ex-
ceptions. For those that do, such as
BASIC, VEST generates the neces-
sary trap barrier (TRAPB) instruc-
tions if

/I~RESERVE = FLOATI NG_
EXCEPTIONS

is specified when translating an
image.

OpenVMS AXP and OpenVMS VAX
Differences
Functional Differences
Most OpenVMS AXP system services
are identical to their OpenVMS VAX
counterparts. Services that depend
on a VAX-specific mechanism are
changed for the Alpha AXP architec-
ture. The TIE intervenes in such sys-
tem services to ensure the translated
code sees the old interface.

For example, the declare change
mode handler ($DCLCMH) system
service establishes a handler for VAX
change mode to user (CHMU) in-
structions. The handler is invoked as
if it were an interrupt service rou-
tine, required to use the VAX return
from interrupt or exception (REI)
instruction to return to the invoker's
context. On OpenVMS AXP systems,
the handler is called as a normal pro-
cedure. To ensure compatibility, the
TIE inserts its own handler when
calling OpenVMS AXP $DCLCMH.
When a CHMU is invoked on Alpha
AXP computers, the T IE handler
calls the handler of the translated
image, using the same VAX-specific
mechanisms that the handler ex-
pects.

Exception Handling
OpenVMS AXP exception process-
ing is almost identical to that per-
formed in the OpenVMS VAX sys-

1 6 February 1993/Vol.36, No.2 /I/IOMNUM|~ATIOMB OI I'l'l~l A C M

www.manaraa.com

tern. The major difference is that the
VAX mechanism array needs only to
hold the value of two temporary reg-
isters, R0 and R1, whereas the Alpha
AXP mechanism array needs to hold
the value of 15 temporary registers,
R0, R1, and R16 through R28.

Complex Instructions
Translat ing some VAX instructions
would require many Alpha AXP in-
structions. Instead, VEST generates
code that calls a T IE subroutine.
Subroutines are implemented in two
ways: (1) hand-wri t ten native emula-
tion routines, e.g., MOVC5, and (2)
VEST-translated VAX emulat ion
routines, e.g., POLYH.

Together , VEST and TIE can
translate and run most existing user-
mode VAX binary images. As shown
in Table 4, per formance of trans-
lated VAX programs slightly exceeds
the original goal. Performance de-
pends heavily on the frequency of
use of VAX features that are not
present in Alpha AXP machines.

ULTRIX MIPS Translation
The translator that converts
ULTRIX MIPS programs to DEC
OSF/1 AXP programs is called mx.
The mx project started after VEST
was functional, and we took advan-
tage of the VEST common code base
for much of the analysis and Alpha
AXP code assembly phases of the
translator. In fact, about half of the
code in mx is compiled from the
same source files as those used for
VEST, with some architectural spe-
cifics supplied by different include
files. The C+ + language has proven
quite valuable in this regard.

mxr is the run-t ime suppor t sys-
tem for translated programs. It pro-
vides services similar to TIE, emulat-
ing the ULTRIX MIPS environment
on a DEC OSF/1 AXP system, mxr is
written in C+ +, C, and Alpha AXP
assembler.

C h a l l e n g e s
Creating a translator for the MIPS
R2000/R3000 architecture presented
a host of new opportunit ies , along
with some significant challenges. The
basic structure of the mx translator is
considerably simpler than that of
VEST. Both the source and the tar-
get architectures are RISC machines;

therefore, the two instruction sets
have a considerable similarity. Many
instructions translate one for one.
The MIPS architecture has very few
instruction side effects or subtle ar-
chitectural details, a l though those
that are present are particularly
tricky. Fur thermore , the format of
an executable p rogram under the
ULTRIX system collects all code in a
single contiguous segment and
makes it easy for mx to reliably f ind
almost 100% of the code in the MIPS
application. The system interfaces to
the ULTRIX and DEC OSF/1 sys-
tems are similar enough that most
ULTRIX system calls have function-
ally identical counterpar ts under the
DEC OSF/1 system.

The challenges in mx stem from
the fact that the source architecture
is a RISC machine. For example,
DEC OSF/1 AXP is a 64-bit comput-
ing environment , i.e., all pointers
used to communicate with the oper-
ating system are 64 bits wide. This
environment does not present a
problem when the pointer is passed
in a register. However, when a
pointer (or a long data item, such as a
file size) is passed in memory, it must
be converted between the 32-bit rep-
resentation, used by the ULTRIX
system, and the 64-bit AXP repre-
sentation, even when the semantics
of the opera t ing system call are the
same on both systems.

A significant challenge is the fact

that our users' expectations for per-
formance of translated programs are
much higher than for VEST. Rea-
soning that the source and target
machines are similar, users expect
mx to achieve a translated p rogram
per formance better than that of the
source program, since Alpha AXP
processors are faster. Thus, the per-
formance goal was producing a
translated p rogram that runs at
about the same speed as the original
p rogram would run on an MIPS
R4000 machine with a 100MHz in-
ternal clock rate.

MaDDing t h e A r c h i t e c t u r e s
It appears , at first glance, that we
could simply assign each MIPS regis-
ter to a cor responding Alpha AXP
register, because each machine has
32 genera l -purpose registers. The
translated code would then have two
scratch registers, since the MIPS ar-
chitecture does not allow user-level
programs to use registers K0 and K 1,
which are reserved for the opera t ing
system kernel.

Unfortunately, translation re-
quires more than two scratch regis-
ters. The Alpha AXP architecture
does not have byte or halfword (16-
bit) loads or stores, and the code se-
quences for pe r fo rming these opera-
tions require four or five scratch reg-
isters. Fur thermore , mx requires a
base register to locate mxr without
having to load a 64-bit address con-

Table 4. T r a n s l a t e d VAX P e r f o r m a n c e , N o r m a l i z e d t o R a t l v e - c o m p l l e d
OpeRVMS AXP Code

2.2

ii i ! ! iiiii!! iiiiiiiiii!iiiiii if!ill !iiiiiiiii i ii!2i~iiiiiiiiiiiil iiiiiiii!ill iii iil ii iil ii iil il !!i iil ii !!!i i~ iili !i iiii iii iii i iiii ii!iiiiii iii i! i i! iilii ii ̧̧ iill iii iii!! iil il i! iil iii ii !i iiii!i
3.1

l ,U

1.0

1.0

1.0

1The DEC 7000 was running at a derated speed compared to production DEC
7000s.
2Timing information for this run is not available.

C O N N U N I C A ~ O N | OF T N i A | / F c b r u a ; y 1993/Vo|,~, No,~ 1711

www.manaraa.com

stant at each call. Finally, the MIPS
architecture has more than 32 regis-
ters, including the HI and LO regis-
ters used by the multiply-and-divide
instructions, and a floating-point
condition register, whose layout and
contents do not correspond to the
Alpha AXP floating-point condition
register.

In mx, we assign registers using
standard compiler techniques. To
assign registers to 33 MIPS resources
(the 32 general registers plus one 64-
bit register to hold both HI and LO),
certain registers are permanendy
mapped, and other MIPS registers
are kept in either AXP registers or
memory. The MIPS argument-pass-
ing registers A0 through A3 are per-
manently assigned to Alpha AXP
registers R16 through R19, which
are the argument registers in the
DEC OSF/1 AXP calling standard.
This correspondence simplifies the
work needed when mxr must take
arguments for an ULTRIX system
call and pass them to a DEC OSF/1
system call. Similarly, the argument
return registers V0 and V1 are
mapped to the Alpha AXP argument
return registers R0 and R1. The re-
turn address registers and stack
pointer registers o f the two machines
are also mapped. MIPS R0 is
mapped to Alpha AXP R31, where
both registers contain the same hard-
wired zero value. We reserve Alpba
AXP registers R22 through R24 as
scratch registers and use them also
when interfacing to mxr. We reserve
Alpha AXP R14 as a pointer to an
mxr communication area. Finally, we
reserve three more registers as
scratch registers for use by the code
generator.

The remaining 16 Alpha AXP
registers are available to be assigned
to the remaining 23 MIPS resources.
After the code is analyzed and we
have register usage information, the
16 most frequently used MIPS regis-

ters are mapped to the 16 remaining
Alpha AXP registers, and the re-
maining registers are assigned to
memory slots in the mxr communica-
tion area. When a MIPS basic block
uses one of the slotted registers, mx
assigns it to one o f the scratch regis-
ters. I f the first reference reads the
old contents o f the register, mx gen-
erates a load instruction from the
communications area. I f the value o f
the MIPS resource changes in the
basic block, the scratch register is
stored in the communication area
before the end of the block. As in
most compilers, if we run out of reg-
isters, a spill algorithm chooses a
value to save in the communication
area and frees up a register.

Alpha AXP integer registers are
64 bits wide, whereas MIPS registers
are only 32 bits wide. We chose to
keep all 32 bit values in Alpha AXP
integer registers as sign-extended
values, with the high 32 bits equal to
bit 31. This approach occasionally
requires mx to generate additional
code to create canonical 32-bit inte-
ger results, but the 64-bit compare
operations do not need to change the
values that they are comparing.

The floating-point architecture is
more complex. Each of the 32 MIPS
floating-point registers is 32 bits
wide. Only the even registers are
used for single precision, and a
double-precision number is kept in
an even-odd register pair. We map
each pair o f MIPS floating-point reg-
isters onto a single 64-bit Alpha AXP
floating-point register. Also, one
Alpha AXP floating-point register
represents the condition code bit of
the MIPS floating-point control reg-
ister. Thus, the mx code generator
can use 14 scratch registers, mx goes
to considerable effort to find paired
loads and stores in the MIPS code
stream and merge them into one
Alpha AXP floating-point operation.

MIPS single-precision operations
cause problems with floating-point
correspondence. Since the single-
precision number on MIPS machines
is kept in only the even register o f the
register pair, the even and odd regis-
ters in a pair are independent when
single-precision (or integer) opera-
tions are done in the floating-point
unit. On Alpha AXP machines, com-
putation must be done on a value

extended to double format in the
whole 64-bit register. We defined two
forms for values in Alpha AXP
floating-point registers: computa-
tional form, in which computation is
done, and canonical form, which
mimics the MIPS even and odd regis-
ters. I f a MIPS program loads an
even register and uses this register as
a single-precision value, mx loads the
value from memory to be used com-
putationally. I f a MIPS program
loads an even register only but does
not use this register in the basic
block, mx puts the 32-bit value into
half o f the Alpha AXP floating-point
register. This permits correct behav-
ior in the pathological case where
half of a floating-point number is
loaded in one place, and the other
half is loaded in some other basic
block. I f a register is used as a single-
precision number in basic block with-
out first being loaded, the code gen-
erator inserts code to convert it f rom
canonical to computational floating-
point form. I f a single-precision
value has been computed in a block
and is live at the end of the block, it is
converted to canonical form.

mx inserts a register-mapping
table into the translated program
that indicates (1) which MIPS re-
sources are statically mapped to
which Alpha AXP registers and (2)
which MIPS resources are normally
kept in memory. This table allows
mxr to find the MIPS resources at
run time.

Finding Code
As with the VEST translator, mx
finds code by starting at entry points
and recursively tracing down the
flow of control, mx finds entry points
using the executable-file header, the
symbol table (if present), and feed-
back from mxr (if present). Finally,
mx performs a linear scan of the en-
tire text section for unexamined
longwords, mx analyzes any data that
looks like plausible code but does not
connect this data into the main flow
graph. Plausible code consists o f a
series o f valid MIPS instructions ter-
minated by an unconditional transfer
o f control.

While finding code and connect-
ing the basic blocks into a flow graph,
mx looks for the code sequence that
indicates a switch statement, i.e., a

78 February 1993/Vo1.36, No.2/¢OllilUNICATIOlilOIITIIIA|M

www.manaraa.com

multi-way branch, usually through
an element of a table, mx finds the
branch table and connects each of
the possible targets as successors of
the branch.

Code Analysis
Static analysis of hundreds of MIPS
programs indicates that only 10 in-
structions account for about 85% of
all code. These instructions are LW,
ADDIU, SW, NOP, ADDU, BEQ,
JAL, BNE, LUI, and SLL. The cor-
responding sequences of Alpha AXP
code range from zero operation
codes (opcodes) (for NOP, since the
Alpha AXP architecture does not
require NOPs anywhere in the code
stream) to two opcodes (for SLL).

Code analysis for source programs
is much more important in mx than
in VEST, because the coding idioms
for many common operations differ
between the Alpha AXP and MIPS
processors. The simple technique of
mapping each MIPS instruction to a
sequence of one or more Alpha AXP
instructions loses much of the con-
text information in the original pro-
gram.

For example, the idiom used to
load a 32-bit constant into a register
on MIPS machines is to generate a
load upper immediate (LUI) opcode,
placing a 16-bit constant in the high-
order 16 bits of a register. This oper-
ation is followed by an OR immediate
(ORI) opcode, logically ORing a 16-
bit zero-extended value into the reg-
ister. The LUI corresponds exactly
to the Alpha AXP load address high
(LDAH) opcode. However, the
Alpha AXP architecture has no way
to directly ORing a 16-bit value into a
register and cannot load even a zero-
extended 16-bit constant into a regis-
ter. When the high-order bit of the
16-bit constant is 1, the shortest
translation for the ORI is three in-
structions. The mx translator scans
the code looking for such idioms and
generates the optimal two-instruc-
tion sequence of Alpha AXP code
that performs the 32-bit load. No
opcode exists that corresponds to the
ORI, but the results in the registers
are correct.

We thought we would never see a
number of code possibilities. In ret-
rospect, this proved to be a mis-
guided assumption. For example, we

have seen programs that branch into
the delay slot of other instructions,
requiring us to indicate that the delay
slot instruction is a member of two
different basic blocks--the block it
ends and the one it starts. We have
observed programs that put software
breakpoint (BREAK) instructions in
the branch delay slot, and thus
BREAK ends a basic block without
being the last instruction. Some com-
pilers schedule code so that half of a
floating-point register is stored and
then reused before the other half is
stored. The general principle that we
intuit from these observations is "if a
code sequence is not expressly pro-
hibited by the architecture, some
program somewhere will use it."

Code Generation
After the program is parsed and ana-
lyzed and the flow graph is built, the
code generator is called. It builds the
register-mapping table, then in turn,
processes each basic block, generat-
ing Alpha AXP code that performs
the same functions as the MIPS code.

At each subroutine entry, mx
scans the code stream with a pattern-
matching algorithm to see if the code
corresponds to any of a number of
standard MIPS library routines, such
as strcpy. (Note that the ULTRIX
operating system has no shared li-
braries, so library routines are bound
into each binary image.) I f a corre-
spondence exists, the entire subrou-
tine is recursively deleted from the
flow graph and replaced with a
canned routine to perform the sub-
routine's work on Alpha AXP proc-
essors. This technique contributes
significantly to the performance of
translated programs.

For each remaining basic block,
the instructions are converted to a
linked list of intermediate opcodes.
At first, each opcode corresponds
exactly to a MIPS opcode. The list is
then scanned by an optimization
phase, which looks for MIPS coding
idioms and replaces them with ab-
stract machine instructions that bet-
ter reflect the idiom. For example,
mx changes (1) loads o f immediate
values to a non-MIPS hardware load
immediate (LI) instruction, (2) shift
and add sequences to abstract opera-
tions that reflect the Alpha AXP
scaled add and subtract sequences,

and (3) sequences that change the
floating-point rounding mode (used
to truncate a floating-point number
to an integer) to a single opcode that
represents the Alpha AXP convert
operation with the chopped mode
(/C) modifier.

MIPS code contains a number of
common code sequences that cross
basic block boundaries, but which
can be compressed into a single basic
block in Alpha AXP code. Examples
of these are the min and max func-
tions, which map neatly onto a single
conditional move (CMOVxx) in-
struction in Alpha AXP code. The
code generator looks for these se-
quences, merges the basic blocks, and
creates an extended basic block,
which includes pseudo-opcodes that
indicate the MIPS code idiom.

After the optimizer completes the
list of instructions, it translates each
abstract opcode to zero or more
Alpha AXP opcodes, again building
a linked list of instructions. This pro-
cess may permit further improve-
ments, so the optimizer makes a sec-
ond pass over the Alpha AXP code.

When processing a basic block, the
code generator assumes that it has an
unlimited number of temporary re-
sources. Since this is not actually
true, the code generator then calls a
register assigner to allocate the real
Alpha AXP temporary resources to
the intermediate temporary regis-
ters. The register assigner will load
and spill MIPS resources and gener-
ate temporary registers as needed.

Finally, the list of Alpha AXP in-
structions is assembled into a binary
stream, and the instruction scheduler
rearranges them to remove resource
latencies and use the chip's multiple-
issue capability.

Image Formats
The file format for input is the stan-
dard ULTRIX extended common
object file format (COFF). In most
ULTRIX MIPS programs, the text
section starts at 00400000 (hexadeci-
mal) and the data at 10000000 (hexa-
decimal). In virtually all programs, a
large gap exists between the virtual
address for the end of text and the
start of the data section. When mx
creates the output image, it places
the generated Alpha AXP code after
the MIPS code and before the MIPS

©Om~UNS©ATSONS OF TSm I ~ / F e b r u a r y 1993/VoL36, No.2 7 ~

www.manaraa.com

MIPS code separately from the
Alpha AXP code.

The translated image is not in
DEC OSF/1 AXP executable format.
Instead, it looks like a MIPS COFF
file, but with the first few bytes
changed to the string "#!/usr/bin/
mxr".

data. This allows the program to
have one large text section. The
Alpha AXP code begins at an Alpha
AXP page boundary, so that we can
set the memory protection on the

Executing a Translated Program
When a translated image is run on
DEC OSF/1 A X E its modified
header invokes mxr first, mxr uses
the memory map (mmap) system call
to load the translated program at the

Table 5. Translated MIPS Relative P e r f o r m a n c e

espresso 2.4 1.1 (1.0) a
li 1.6 1.2 0 . 0)
eqntott 1.6 2.1 (1,0)
compress 2.7 1.0 (1.0)
SC 2 w

gcc 2.1 1.2 (1.0)
Geometric Mean 2.0 1.3 (1.0)

(without sc)

spice2g6 - - - -
doduc 1.7 1.0
mdljdp2 2.7 1.0
wave5 1.1 1.0
tomcatv 3.0 1.0
ora 1.5 1.0
alvinn 1.6 1.0
ear 1.7 1.0
mdljsp2 1.4 1.0
swm256 2,3 1.0
su2cor 2.7 1.0
hydro2d 2.9 1.0
nasa7 2.6 1.0
fpppp 2.2 1.0
Geometric Mean 2.0 1.0

(without spice2g6)

1The values in parentheses are from running once, then retranslating with the run-
time feedback from the first run; this gave a significant performance difference only
for the programs shown.
2Timing information for this run is not available.
NOTE: The larger the number, the slower the performance. These performance
numbers were measured on derated field test hardware and software at various
times during 1992; production results will vary somewhat. The SPEC benchmarks
are written in FORTRAN and C; no conclusions should be drawn about other
classes of programs written in other languages.

NOTE: The larger the number, the slower the performance. These performance
numbers were measured on derated field test hardware and software at various
times during 1992; production results will vary somewhat. The SPEC benchmarks
are written in FORTRAN and C; no conclusions should be drawn about other
classes of programs written in other languages.

same virtual address that it would
have had under the ULTRIX operat-
ing system, mxr resets the protection
of the MIPS code to read/no-write/
no-execute, the Alpha AXP code to
read/no-write/execute, and the data
to read/write/no-execute.

Then mxr allocates a communica-
tion area and initializes Alpha AXP
R14 to point to this area. The com-
munication area contains save areas
for MIPS resources, initialized point-
ers to mxr services routines, and
other scratch space, mxr then con-
structs new command argument
(argv) and envi ronment vectors as
32-bit wide pointers (as the MIPS
program expects), arranges to inter-
cept certain signals from the DEC
OSF/1 AXP system, and transfers
control to the translated start address
of the program.

When a system signal is delivered
to the program, control goes to the
signal intercept code in mxr. This
code transforms the signal context
structure from the DEC OSF/1 AXP
system and constructs a ULTRIX
MIPS style context, which it passes
then to the translated signal handler.

Certain signals are processed spe-
cially. For instance, a program that
attempts to transfer control to a loca-
tion containing M1PS code rather
than translated code gets a segmen-
tation violation, since the MIPS code
is not executable. This situation can
occur if a routine modifies its return
address to be a MIPS address con-
stant, mxr will examine the target
address and, if it corresponds to the
start of a pretranslated MIPS basic
block, divert the flow of control to
the translated code for that block. I f
not, mxr enters the MIPS inter-
preter. The interpreter proceeds to
emulate the M1PS code until a trans-
lated point is reached, mxr then
resynchronizes its machine state and
reenters the translated code.

Translation Goals and Classes of
Programs Not Supported
Our goal was to translate most user
mode MIPS programs compiled for a
MIPS R2000 or R3000 machine run-
ning U L T R I X Release 4.0 (or later)
to run identically on the DEC OSF/I
AXP system with acceptable perfor-
mance. As shown in Table 5, perfor-
mance of translated MIPS programs

8 0 February 1993/Vo1.36, No.2 /¢OMMUNICATIONSOFTHIIAClll

www.manaraa.com

meets or exceeds the original goal.
Due to ext reme technical obsta-

cles, some classes of programs will
never be suppor ted by mx. We de-
cided not to translate programs that
use privileged opcodes or system
calls or that need to run with su-
peruser privileges. In cases where
the file system hierarchy differs be-
tween the ULTRIX and DEC OSF/1
AXP systems, programs that expect
files to be in part icular places or in a
part icular format may fail. Similarly,
programs that read /dev/kmem and
expect to see an ULTRIX MIPS
memory layout fail.

Certain other classes o f programs
are not current ly suppor ted, but are
technically feasible. These include
big-endian MIPS programs from
non-Digital MIPS environments,
programs that use R4000 or R6000
instructions that are not present on
the R3000 model, programs that
need to be muhiprocessor safe, and
programs that require certain cate-
gories of precise exception behavior.

Summary
Building successful, turnkey binary
translators requires hard work but
not magic. We built two different
translators, VEST and rex. In both
cases, the old and new environments
are, by design, quite similar in funda-
mental data types, memory address-
ing, register and stack usage, and
operat ing system services. Transla-
tors between dissimilar architectures
or opera t ing systems are a different
matter. Translat ing the code might
be a reasonably s traightforward task.
However, emulat ing a run-t ime envi-
ronment in which to execute the
code might present insurmountable
technical and business obstacles.
Without captur ing the environment,
an instruction translator would be of
n o USC.

Acknowledgments
Steve Hobbs originally suggested the
binary translation path in the archi-
tecture task force discussions. Nancy
Kronenberg and Bob Supnik added
critical early suppor t and later coor-
dination. J u d Leonard set the engi-
neering direction of doing careful
static translation once, instead of on-
the-fly dynamic translation at each
execution. Butler Lampson added a

critical morale boost at the right time.
J im Gettys also has been an impor-
tant and vocal supporter .

Success would not have been pos-
sible without the enthusiastic suppor t
of the OpenVMS AXP and DEC
OSF/1 AXP opera t ing system
groups, and the respective run-t ime
library groups, especially Matt
LaPine, Larry Woodman, Hai
Huang, Dan Murphy, Nitin
Karkhanis, Ray Lanza, Anton Ver-
hulst, and Terry Grieb.

The Port ing and Performance
Engineer ing Group did extensive
por t ing and testing of customer ap-
plications. The group members , es-
pecially Shamin Bhindarwala and
Robi Aljaar, were the source of ex-
tremely valuable customer feedback.
The Engineer ing System Group
also provided valuable feedback.

The Alpha AXP Migration Tools
team have each made several key
contributions: Kate Burleson, Peigi
Cleminshaw, George Darcy, Cather-
ine Frean, Bruce Gordon, Rick Gor-
ton, Kevin Koch, Mark Herdeg, Gio-
vanni Della Libera, Nikki
Mirghafori , Srinivasan Murari , J im
Paradis, and Ashutosh Roy. !"4

References
1. Bergh, A., Keilman, K., Magenheimer,

D. and Miller, J. HP 3000 emulation
on HP Precision Architecture comput-
ers. Hewlett-PackardJ. (Dec, 1987).

2. Echo Logic, Inc. News Release (May 4,
1992).

3. Hunter, C. and Banning, J. DOS at
RISC. Byte Mag. (Nov. 1989), 361-368.

4. Kronenberg, N. et al. Porting
OpenVMS from VAX to Alpha. Com-
mun. ACM 36, 2 (1993).

5. Sites, R., Ed. Alpha Architecture Refer-
ence Manual. Digital Press, Burlington,
Mass., 1992.

6. Sites, R. Alpha AXP architecture. Com-
mun. ACM 36, 2 (1993).

7. Wirbel, U DOS-to-UNIX compiler.
Electr. Eng. Times (Mar. 14, 1988), 83.

CR Categories and Subject Descrip-
tors: C.0 [Computer systems organiza-
tion]: General--system architectures; D.3.4
[Software]: Programming Languages,
Processors--compilers, interpreters, run-time
environments; 1.2.2 [Computing method-
ologies]: Artificial Intelligence, Auto-
matic programming--program transforma-
tion

Additional Key Words and Phrases:
Binary translation, computer architec-
ture, CISC computers, processor archi-

tecture translation, RISC computers

About the Authors:
RICHARD L. SITES is a senior consult-
ant engineer in the semiconductor engi-
neering group at Digital Equipment Cor-
poration.

ANTON CHERNOFF is a member of the
technical staff at Digital working in the
Alpha migration tools group. He spent
1982 through 1991 at Liant Software
Corporation as a senior consulting engi-
neer in compiler and debugger develop-
ment.

MATTHEW B. KIRK is a senior software
engineer in the SEG/AD AXP migration
tools group, where he works on binary
translator development, testing, and sup-
port. He has also designed and developed
automated architectural test software for
pipelined VAX hardware and the CI
computer interconnect.

MAURICE P. MARKS is a senior engi-
neering manager in the semiconductor
engineering advanced development
group. He manages the AXP Migration
Tools Group and contributed to the de-
sign and implementation of translators.
In twenty years with Digital, he has led
compiler, operating system, hardware
and software tools, and chip projects,

SCOTT G. ROBINSON is a software
engineering manager in the AXP migra-
tion tools group and has contributed to
the design and implementation of the
binary translators, particularly the VAX
translated-image environment. He previ-
ously worked on a wide variety of Digital
hardware and software implementations.

Authors' Present Address: Digital Equip-
ment Corp., TAY2-2/F14, 153 Taylor St.,
Littleton, MA 01460-1407.

T h e following are t rademarks o f Digital Equip-
ment Corpora t ion: ALL-IN-I , Alpha AXP,
AXP, DEC OSF/1 AXP, Digital, OpenVMS
AXP, OpenVMS VAX, ULTRIX, and VAX.

The following are th i rd-par ty t rademarks :
MIPS is a t r ademark of MIPS C o m p u t e r Sys-
tems, Inc.; Windows is a t r a d e m a r k of Micro-
soft Corpora t ion; Unix is a registered t rade-
mark o f Unix System Laboratories, Inc.;
Macintosh is a registered t r ademark o f Apple
Compute r , Inc.; H P is a registered t r a d e m a r k
o f Hewlen-Packard Company .

Permission to copy without fee all or part of this
material is granted provided that the copies are not
made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publi-
cation and its date appear, and notice is give that
copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to
republish, requires a fee and/or specific permission,

©ACM0002-0782/93/0200-069 $1.50

¢OImMUNICATIONS OF THU ACid/February 1993/Vol.36, No.2 8 1

